DEVELOPMENT

The long and short of hair growth

The length of your eyelashes probably differs from the length of the hair on your head—and unlike your hair, your eyelashes can never reach your shoulders. What controls how long hair can get? To find out, Higgins et al. studied people with a rare disorder called familial trichomegaly, who have very long eyelashes and longer hair on the arms. They found that these people had a mutation in the gene that encodes fibroblast growth factor 5 (FGF5). When human hair follicles produce FGF5, they stop growing hair. Targeting FGF5 could potentially control the growth and rest phases of hair follicles, preventing unwanted hair from sprouting or growing longer lashes and locks. — LC

EDUCATION

Promoting evidence-based teaching

Empirical studies of science educational methods illuminate the best practices for getting students to learn. But why don’t more science educators use such evidence-based teaching methods in their classrooms? They might not have access to the studies, DeChenne et al. report. The authors examined the role of practitioner-focused, discipline-based education research (DBER) journals in promoting and encouraging postsecondary teachers to adopt laboratory exercises supported by education research. Results showed a missed opportunity: DBER journals publish only a limited number of evidence-based instructional practices. — MM

ELECTRON TRANSFER

Electron tunneling or flickering resonance?

When electrons move from one site to another in biological molecules and the transfer drops off exponentially with distance, physicists usually assume they’re seeing the electrons quantum-tunneling through energy barriers. A theoretical study by Zhang et al. provides a different interpretation. Molecules with the right combination of sites, with energy levels that align fleetingly during structural fluctuations, can produce the same decay signature. These “flickering resonances” temporarily create a band-like state for the electron, and as more sites are involved (corresponding to longer distances), the probability of creating the resonance drops exponentially. This mechanism operates over scale lengths of up to about 15 angstroms and could explain the short-distance electron transfer between bases in DNA. — PDS

MARINE BIOLOGY

Ship strikes threaten blue whale numbers

Whale-ship collisions may be behind low blue whale population counts despite international protections. Irvine et al. used satellites to track 171 blue whales off California over 15 years. The whales, part of the eastern North Pacific population, returned each summer to krill-rich upwelling zones off Santa Barbara and San Francisco—areas also crossed by major shipping lanes. At least three blue whales were killed by ship strike during 2 weeks in 2007. But a similar problem in Canada’s Bay of Fundy offers hope: Eleven years ago, its maritime industry moved a shipping lane and reduced speed limits, reducing the likelihood of vessels striking right whales by 80%. — VM

MICROBIAL PATHOGENS

How to make a not-so-painful ulcer

Buruli ulcer disease causes extensive skin lesions and can be deadly, but the lesions themselves don’t hurt, which can stop patients from seeking the appropriate care. The pathogen Mycobacterium ulcerans causes Buruli ulcers and also alleviates the pain. Although many scientists studying this disease thought the pathogen caused nerve damage that blocked the pain, Marion et al. now show that the mycobacteria produce the mycolactone toxin, which causes analgesia by blocking the function of pain-responsive nerves. The findings could potentially help researchers develop a whole new class of painkillers. — SMH

Cell 157, 1565 (2014).

GEOPHYSICS

Ample explanation for seismic variation

Geophysicists use seismic waves to make images of Earth’s interior, but how they interpret those pictures depends on the properties of the minerals that make up the mantle. Wu and Wentzcovitch show that when the electron configuration of the iron in one of the most abundant minerals in the mantle, ferropericlase, changes at depths of 1000 km and greater, so does the way seismic waves propagate. The authors discuss several seismic features of the mantle previously thought to reflect different arrangements of minerals, such as compressional wave speed variations at depths of around 1750 km. Such features could be due not to mineralogy but to this electronic spin effect. — BG

Biological charge transfer via flickering resonance

Yuqi Zhang, Chaoren Liu, Alexander Balaeff, Spiros S. Skourtis, and David N. Beratan

Departments of *Chemistry, ^Biochemistry, and ~Physics, Duke University, Durham, NC 27708; and **Department of Physics, University of Cyprus, Nicosia 1678, Cyprus

Edited by Jay R. Winkler, California Institute of Technology, Pasadena, CA, and accepted by the Editorial Board May 9, 2014 (received for review September 1, 2013)

Biological electron-transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multistep hopping. However, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecular structures and of the medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative. The distance dependence of FR transport thus mimics the exponential decay that is usually associated with electron tunneling, although FR transport involves real carrier population on the bridge and is not a tunneling phenomenon. Likely candidates for FR transport are macromolecules with ET groups in van der Waals contact: DNA, bacterial nanowires, multitheme proteins, strongly coupled porphyrin arrays, and proteins with closely packed redox-active residues. The theory developed here is used to analyze DNA charge-transfer kinetics, and we find that charge-transfer distances up to three to four bases may be accounted for with this mechanism. Thus, the observed rapid (exponential) distance dependence of DNA ET rates over distances of ≲15 Å does not necessarily prove a tunneling mechanism.

Chemical structure and, importantly, structural fluctuations determine the mechanism and kinetics of charge transfer. Redox energy fluctuations are of particular significance when transport barrier heights and the energy fluctuations are of similar magnitude. Indeed, the sensitivity of biological electron-transfer (ET) rates to conformational fluctuations and consequent (transient) delocalization is the topic of intense interest (1–3). Resonant enhancement of biological ET rates is consistent with ET groups in van der Waals contact: DNA, bacterial nanowires, multitheme proteins, strongly coupled porphyrin arrays, and proteins with closely packed redox-active residues. The theory developed here is used to analyze DNA charge-transfer kinetics, and we find that charge-transfer distances up to three to four bases may be accounted for with this mechanism. Thus, the observed rapid (exponential) distance dependence of DNA ET rates over distances of ≲15 Å does not necessarily prove a tunneling mechanism.

ET Kinetics

The analysis in this paper concerns multisite charge transfer. Conventional biological ET theory is based on two-state dynamics (2, 14–16), with D and A brought into electronic resonance by medium reorganization. At resonance, the electron propagates from D to A either by tunneling (through space or via a bridge, B) i.e., non-adiabatic ET, or by strong electronic mixing among D, B, and A (adiabatic ET). Here, we explore a limit where the intrinsic energy fluctuations and/or medium reorganization create multistate electronic degeneracy and we demonstrate that charge transport in the degenerate state results in exponential distance dependence of the ET rate in both adiabatic and nonadiabatic regimes.

Two-State ET. To set the stage for the generalized flickering resonance (FR) mechanism, we explain this framework in the context of two-state D-to-A ET where the D and A energies are modulated by independent harmonic fluctuations. In this case, the FR picture is the standard picture of ET, where transfer takes place in thermally populated D-A resonances, within a redox energy matching window equal to the D-to-A coupling. To frame this discussion, we adopt the simplest kinetic model for two-state ET

\[
D^\cdot A \xrightleftharpoons{\kappa_{\text{off}}}{\kappa_{\text{on}}} R_2^\cdot (D^\cdot A) \xrightleftharpoons{1/\tau_{\text{trans}}}{1/\tau_{\text{relax}}} R_2^\cdot (D^\cdot A^\cdot) \rightarrow DA^\cdot.
\]

The overall D-to-A electron or hole transfer rate is denoted \(k_{\text{ET}}\). D* is the initially prepared state with an electron or hole on D in a state that is not resonant (R) with A. \(R_2^\cdot (D^\cdot A)\) and \(R_2^\cdot (D^\cdot A^\cdot)\) denote the subensemble of structures with D and A in two-state resonance and the electron on D or A, respectively. \(DA^\cdot\) denotes the ET product with the electron or hole on the relaxed acceptor. \(k_{\text{on}}\) is the rate to reach two-state resonance \(R_2^\cdot (D^\cdot A)\),

Significance

Electron transport through DNA plays a central role in nucleic acid damage and repair, and it is usually modeled using a carrier tunneling mechanism (at short distances) and a hopping mechanism (at longer distances). We find that fluctuations into transient geometries that bring multiple bases into electronic degeneracy may support band-like transport during the resonance lifetimes over a distance of ≲15 Å, obviating the need to invoke electron tunneling at short distances. This line of research may help to reveal mechanisms of charge transport in multitheme proteins, bacterial nanowires, and synthetic nanowires, and may also assist in framing the mechanisms of coherent multipigment excitonic transport in light-harvesting proteins.

Author contributions: Y.Z., C.L., A.B., S.S.S., and D.N.B. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.R.W. is a guest editor invited by the Editorial Board.

1Present address: NanoScience Technology Center, University of Central Florida, Orlando, FL 32826.

2To whom correspondence may be addressed. E-mail: david.beratan@duke.edu or skourtis@ucy.ac.cy.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316519111/-/DCSupplemental.
$1/\tau_{\text{max}}$ is the inverse time for electron transfer at resonance, and $1/\tau_{\text{trap}}$ is the trapping rate (considered irreversible in the context of transition state theory). The overall ET rate in this kinetic scheme is

$$k_{\text{ET}} = (1/\tau_s) \exp[-\Delta G_{\text{act}}/k_BT].$$ \[2\]

For nonadiabatic ET, $\Delta G_{\text{act}} = \Delta G_0^{\text{FR}} + \lambda^2/4\lambda_l$ and $1/\tau_s = 2\pi\lambda^2/b\sqrt{4\pi\lambda_l}k_BT$. For adiabatic ET, $\Delta G_{\text{act}} = \Delta G_0^{\text{AD}}$ and, if ET is limited by solvent relaxation and/or trapping, $1/\tau_s = \theta_w$ (e.g., $\tau_{\text{trap}} \approx \tau_L$ is the longitudinal relaxation time). Approximate expressions can be derived for ΔG_{act}. For example, when $\Delta G_0^{\text{FR}} = 0$, $\Delta G_{\text{act}} = (\lambda/4) - |V|$ \[15\].

In our FR formulation of two-state (D-to-A) ET,

$$k_{\text{ET}} = (1/\tau_s) P_{\text{match}}(2),$$ \[3\]

where $P_{\text{match}}(2)$ is the probability that the D and A energy levels differ by less than $|V|$. For D and A sites, as well as independent fluctuations of the coupling V, then $P_{\text{match}}(2) \approx (\theta/\sqrt{2\pi}) \exp(-\Delta G_0^{\text{FR}}/k_BT)$ and $\Delta G_{\text{act}}^{\text{FR}} = (\Delta G_0^{\text{FR}})^2/4\lambda_l$ \[SI Text, section S4\]. Thus, we can write the nonadiabatic ET rate either as $k_{\text{ET}}^{\text{FR}} = (1/\tau_s) \exp(-\Delta G_{\text{act}}^{\text{FR}}/k_BT)$ with $1/\tau_s = 2\pi\lambda^2/b\sqrt{4\pi\lambda_l}k_BT$ or $k_{\text{ET}}^{\text{FR}} = (1/\tau_s)^{\text{FR}} P_{\text{match}}(2)$, where, using $1/\tau_s = (\theta/\sqrt{2\pi}) \times 1/\tau_r$, we find $\tau_r = \tau_{\text{Rabi}}/\pi^2$ ($\tau_{\text{Rabi}} = \hbar/(2|V_0|)$ is the Rabi time). Moreover, $P_{\text{match}}(2) = 2V_{DA} \times FC$, where FC is the well-known Franck-Condon factor: $\langle \delta(E_{\text{final}} - E) \rangle = (\delta(E_{\text{final}} - E_{\text{ini}}) = (\sqrt{4\pi}\lambda_l k_BT)^{-1} \exp(-\Delta G_{\text{act}}/k_BT)$. \[SI Text, section S4\]. In the adiabatic limit we have $\theta_0 \approx 1$ and $\tau_r \ll \tau_s$. Importantly, $\Delta G_0^{\text{FR}} = 0$, $P_{\text{match}}(2) \approx (1/\tau_s)^{\text{FR}} \exp(-\Delta G_{\text{act}}/k_BT)$, where $\Delta G_{\text{act}}^{\text{FR}} = (\lambda/4) - |V|$ and $\tau_r = \tau_s/3$. \[SI Text, section S4\]. As such, we have two equivalent strategies to formulate the two-state ET rate (Eqs. 2 and 3). An advantage of using the matching probability (Eq. 3) in formulating the ET rate is that it proves a computationally accessible means to estimate ET rates without first assuming a limiting coupling regime (i.e., adiabatic or nonadiabatic), and it enables generalization to multistate resonance.

A Generalized ET Rate for Multistate Resonance. For two-states, the FR rate is identical to two-state ET rates (adiabatic or nonadiabatic, depending on the magnitude of V_{FR}). For an N-state system, the FR mechanism defines a particular ET channel (other channels could well coexist). The FR kinetic model and the rate associated with FR are formulated in analogy to the above approach with the kinetic scheme

$$\text{D}^{+} \text{B}_{N-2} \text{A} \xrightarrow{\tau_{\text{max}}} \text{R}_N^{+} (\text{D}^{+} \text{B}_{N-2} \text{A}) \xrightarrow{1/\tau_{\text{ET}}} \text{DB}_{N-2} \text{A}^{-}.$$ \[5\]

$R_N^{+} (\text{D}^{+} \text{B}_{N-2} \text{A})$ and $R_N^{-} (\text{DB}_{N-2} \text{A}^{-})$ denote the subensemble of structures with all N units (including D and A) in degeneracy and the electron on D or A, respectively. $\text{DB}_{N-2} \text{A}^{-}$ is the product with the trapped electron on A, and P_{match} is the probability of matching all N states.

The FR channel ET rate is

$$k_{\text{ET}}^{\text{FR}} = (1/\tau_s) \exp(-\Delta G_{\text{act}(N)}/k_BT)$$ or $k_{\text{ET}}^{\text{FR}} = (1/\tau_s)^{\text{FR}} P_{\text{match}}(N)$. \[6\]

$\Delta G_{\text{act}(N)}$ is the activation free energy to reach N-state D-B-A resonance and τ_s is the rate-limiting time scale associated with the kinetics (k$_{-1}$, τ_{max}, or τ_{trap} for the N-state system). In $[5]$, τ_{max} is interpreted as the D-to-A transport time for N-state D-B-A resonance with a finite lifetime. The minimum value of τ_{max} is obtained in the infinite FR lifetime limit, which gives $\tau_{\text{max}} = \tau_{\text{Rabi}}/\pi^2$ \[SI Text\] in the range of tens of femtoseconds for a few redox sites. The τ_{max} step in $[5]$ generates transient carrier population on the bridge independent of the process that ultimately limits the overall rate of the FR channel (15).

As in the two-state limit, we could develop a multistate description where $k_{\text{ET}}^{\text{FR}} = (1/\tau_s) \exp(-\Delta G_{\text{act}(N)}/k_BT)$. However, the $P_{\text{match}}(N)$ formulation is particularly convenient in terms of computation and interpretation because of its explicit treatment of the influence of nearest-neighbor coupling on the energy-matching window (Fig. S1). For an N-state system with uncorrelated redox energy fluctuations, the probability of simultaneously matching all levels, summed over all matching energies, is

$$P_{\text{match}}(N) = \int_{-\infty}^{+\infty} dVP_{\text{FR}}(V) \int_{-\infty}^{+\infty} dE_1 P_{\text{FR}}(E_1)$$

$$\times \left[\int_{\min\{e_1, e_2, \ldots, e_N\} - |V|}^{e_1 + |V|} dE_2 P_{\text{FR}}(E_2) \ldots \int_{\min\{e_1, e_2, \ldots, e_N\} - |V|}^{e_N + |V|} dE_N P_{\text{FR}}(E_N) \right].$$

[7]

The upper limit of integration for the Nth site takes the minimum value of all site energies for sites 1 to N minus $|V|$, and the lower limit of the Nth site integral takes the maximum value of all site energies for sites 1 to N minus $|V|$. In this study, the matching probabilities are calculated using numerical integration for fewer than six sites and are computed using Monte Carlo methods for larger systems (18). We can derive exact expressions for $P_{\text{match}}(N)$ or $\Delta G_{\text{act}(N)}$ that are valid for arbitrary intersite couplings and can also derive corresponding relations between τ_s and τ_r \[SI Text, section S4\]. In general, $P_{\text{match}}(N) \approx \exp(-\Delta G_{\text{act}(N)}(E_1), \{V_{\text{ini}}\}, \{\lambda_i\}/k_BT$, where, approximately, $\propto \theta_0^{N-1}$, with $\theta_0 = V_{\text{ini}}/\sigma_i(E_1)$, where $\sigma_i(E_1) = \sqrt{2\lambda_i k_BT}$ is the rms fluctuation of the ith site redox energy (and λ_i is the corresponding redox site reorganization energy), and $V_{\text{ini}}^{\text{eq}}$ is the ith nearest-neighbor coupling. θ_i is
interpreted as a local (nearest-neighbor) adiabaticity parameter, \(\theta_i = \tau_{\text{Rabi}(i)}/\tau_{\text{Rabi}(i+1)} \). The FC time \(\tau_{\text{FC}(i)} = h/2\sqrt{\Delta g_i T} \) is the time associated with the loss of the nearest-neighbor resonance arising from energy fluctuations of the ith site. \(\tau_{\text{Rabi}(i)} = h/2\gamma_{\text{Rabi}}(i) \) is the Rabi time associated with resonance between sites \(i \) and \(i + 1 \). Therefore, \(f \propto \theta_i^{N-1} \) is a generalized N-state resonance adiabaticity parameter (SI Text, section S4). Even if nearest-neighbor resonances are quasiadiabatic with \(\theta_i \) slightly less than unity, the N-state resonance becomes nonadiabatic as N grows because \(f \propto \theta_i^{N-1} \). Thus, the effective lifetime of the N-state resonance decreases with increasing N. In Eq. 6, \(\tau / \tau_n \) \(\propto f \) and, in a generalized nonadiabatic limit defined by \(f \ll 1 \), we have \(\tau_n \gg \tau \). If the overall rate is limited by carrier transmission through the N-state resonance, \(\tau \), in Eq. 6 is interpreted as \(\tau_{\text{trans}} \), where \(\tau_{\text{trans}} = \tau_{\text{trans}}/f \) and \(\tau_{\text{trans}} \) is in the range of tens of femtoseconds for a few redox sites. That is, the nonadiabatic electron transmission time through the FR bridge is the band transport time increased by a nonadiabatic factor associated with degeneracy breaking.

Below, we describe a simple analytical approximation to Eq. 7 for a bridge with uncorrelated fluctuations, equal average site energies, and site energy fluctuations larger than coupling energy fluctuations (nonadiabatic limit). Importantly, (i) \(P_{\text{match}}(N) \) decays exponentially with N; (ii) the distance dependence of \(P_{\text{match}}(N) \) coincides with the slope of the hole transfer rates and yields in the experiments of Lewis et al. (19) and Giese et al. (20), for reasonable values of the hole transfer rate parameters; and (iii) fits to experimental ET rates and yields require \(\tau = 1 - 15 \) fs. To identify the rate-limiting step associated with the kinetic scheme of [5], it is necessary to consider \(\tau_n \), which is longer than \(\tau \). Different possibilities for the rate-limiting steps are discussed below.

The Multisite Matching Probability

As a starting point, we assume statistically independent fluctuations for the multiple sites in the ET system. Standard deviations (\(\sigma_E \), SD) for DNA base energies estimated from quantum mechanical (QM) analysis of molecular dynamics (MD) sampled structures indicate \(\sigma_E \approx 0.2 \) eV without solvent (21–23); inclusion of solvent interactions increases these values to 0.3–0.5 eV (24, 25). Fig. S1 shows multisite energy-matching probabilities for a four-site linear system with Gaussian fluctuations of equal mean energies (\(\sigma_E = 0.16 \) eV), and with nearest-neighbor couplings fixed at \(|V_{nn}| = 10^{-4}, 10^{-5}, \) or \(10^{-6} \) eV. Fig. S1 indicates that the four-site energy matching probability drops several orders of magnitude for each order of magnitude decrease in \(|V_{nn}| \), because smaller values of \(|V_{nn}| \) require closer site energy matching to establish FR.

The probability of matching N fluctuating site energies will decrease in a multiplicative fashion, with one multiplier per site. The energy-matching probability thus drops exponentially with distance. The data in Fig. S2 show the exponential decay of energy level-matching probabilities for a homogeneous chain (solid line) and an inhomogeneous chain (dashed line). For the homogeneous chain, all sites have the same mean energy values and \(\sigma_E = 0.6 \) eV; each nearest-neighbor coupling has zero mean and \(V_{nn} = 0.1 \) eV (the SD of the coupling magnitudes). For the inhomogeneous chains, D and A have the same mean energy values, whereas the bridging site energies are offset by 1 eV. The distance between neighboring sites is assumed to be 3.4 Å. In the case where all of the sites have the same mean energy (Fig. S2, solid line), the exponential decay constant for the matching probability as a function of distance is \(\sim 0.6 \) ÅÅ. In the inhomogeneous case (Fig. S2, dashed line), the exponential decay constant is \(\sim 0.7 \) ÅÅ. Thus, the average decay exponent increases as the energy offsets grow among the sites. The matching probability is several-fold smaller for the inhomogeneous chains compared with the homogeneous chains, although the decay of the matching probabilities with distance is not very different (because the bridging spectral functions are energy matched to one another in both cases).

The simple exponential distance dependence of the energy matching probabilities found in Fig. S2 is readily understood using an approximate model. Consider a chain with site energies that are described as independent Gaussian random variables with zero means and identical nonzero SDs, \(\sigma_E \). The joint probability density function for the N-site redox energies is \(\rho(E_1) \times \rho(E_2) \times \cdots \times \rho(E_N) \), where \(\rho(E) = (1/\sqrt{2\pi\sigma_E^2}) e^{-(E-E_i)^2/2\sigma_E^2} \). An upper bound to the energy-matching probability is approximately \(P_{\text{match}}(N) = (2/f)^N \rho_{\text{rms}} \). Because \(V_{\text{rms}}/\sigma_E \approx 1/6 \) in the example above, we can expand the exponential functions in terms of \((E_i/\sigma_E)^\beta \). Retaining the zeroth-order term, we find \(P_{\text{match}}(N) = (\sqrt{2/f} V_{\text{rms}}/\sigma_E)^N \) or \(P_{\text{match}}(N) \approx e^{-\beta} \), \(\Phi = (1/\Delta R) \ln \left(\sqrt{2/f} V_{\text{rms}}/\sigma_E \right) \) \[8\] for a distance \(\Delta R \) between adjacent sites [corrections to this result are found by retaining higher-order terms in \((E_i/\sigma_E)^\beta \)]. For the inhomogeneous case of Fig. S2, a similar argument leads to \(P_{\text{match}}(N) \approx e^{-(E_i^2 - 2\sigma_E^2 e^{-N\beta})} \), where \(E_{BP} \) is the mean energy gap between the A and D states and the N sites of the bridge. Using the values of Fig. S2 (typical for DNA), i.e., \(V_{\text{rms}} = 0.1 \) eV and \(\sigma_E = 0.6 \) eV, we find that \(\Phi \approx 0.6 - 1/3 \) ÅÅ for a 3.4 Å spacing between bases. This is an excellent approximation to the numerical values found in Fig. S2. For the inhomogeneous system in Fig. S2, the decay of the D-to-A rate for the superexchange mechanism would be proportional to the square of the B-mediated D-A tunneling matrix element \(V_{\text{rms}}^2 / \beta = e^{(E_i^2 - 2\sigma_E^2 e^{-N\beta})} \), where \(\beta \approx 2/3.4 \) ÅÅ in the perturbative limit (1, 2, 26, 27). Substituting \(V_{\text{rms}} = 0.1 \) eV and \(E_{BP} = 1 \) eV gives \(\beta \approx 1.4 \) ÅÅ. As such, for the parameters used in the illustration, the FR mechanism has much softer distance dependence than the superexchange rate. This simple analytical argument is strictly valid for \(V_{\text{rms}}/\sigma_E < 1 \) (the generalized nonadiabatic limit described above), and it can be used to assess the relative distance dependence of superexchange compared with FR as a function of \(V_{\text{rms}}/\sigma_E \) and \(E_{BP} \). An approximately exponential distance decay of the matching probability is also observed in molecular dynamics simulations and is discussed below. This simple analytical argument captures the essence of the matching probability distance dependence. The crucial point from the above analysis is that FR transport requires all \(N - 2 \) bridging level energies to match each other, and the D and A energies; this matching probability drops exponentially with distance.

Correlated vs. Uncorrelated Site Energy Fluctuations

The illustrative FR computations above assume that site energy fluctuations for each site are uncorrelated Gaussians with \(\sigma_E \approx \sqrt{2k_B T} \) (15, 16). Numerical simulations of Elstner demonstrate that the site energy fluctuations of neighboring bases in DNA are strongly correlated (25, 28). Mixed quantum/classical simulations indicate approximately Gaussian distributed site energy distributions (25, 29, 30) and nearest-neighbor electronic coupling distributions (25, 28, 31–34). However, the site energy fluctuation correlations break the simple connections between energy matching probability \(P_{\text{match}}(N) \) using molecular dynamics simulations that include correlated energy level fluctuations.

The FR Model for DNA Charge Transport Kinetics

Limitations of Current Models. A large body of experimental data indicates two regimes of DNA charge transfer: a regime with strong (exponential) dependence of the rate/yield on distances up to \(\sim 3-7 \) bp and a much weaker dependence for longer distances (35). Theoretical models have focused on describing short-distance
transport with a tunneling model and longer-distance transport with a multistep or multirange hopping approach (36, 37). This framework has challenges associated with understanding transient B population in an apparent tunneling regime and with describing the transition between strong and weak distance-dependent regimes (SI Text, section S1 and refs. 4, 19, 21, 22, 30, and 38–41).

FR Descriptions of Charge Shift and Charge Separation in DNA. The highest occupied molecular orbital (HOMO) energies of DNA bases are often used to estimate site energies in simple transport models (42, 43). The site energies of purines are higher than those of pyrimidines, so hole transfer is dominated by the purines. It is found that thermal fluctuations of the DNA bases produce distributions of base (gas phase) HOMO energies that are found to be approximately Gaussian distributed (25). Quantum mechanics/molecular mechanics (QM/MM) simulations that include solvent interactions further broaden the site energy distributions, producing increased probabilities of level matching even for sites with different mean energies (i.e., with different redox potentials). DNA sampling and energy computation protocols based on a model AT sequence, including correlated site energy fluctuations, are described in SI Text, section S2 (21, 22, 25, 28, 29, 44, 45), and these data are required for the FR kinetic analysis discussed below.

Charge Shift in the FR Framework. We used the MD-derived parameters in the FR model to describe hole transfer and trapping in DNA systems studied by Giese et al. (20). As indicated in Fig. S3, a hole is injected onto a G site via photoexcitation of a 4′-acetylated nucleotide. From there, the hole can either be lost to solvent in a chemical reaction that converts the G to an 8-oxoG, or it can propagate across an AT bridge to a lower-energy GGG state and exit to solvent from that unit (Fig. S3). The location of the 8-oxoG is then revealed through strand cleavage with piperidine, and the chemical yield ratio PGGG/PG for the cleavage products at the injection site G or the destination site GGG is measured using gel electrophoresis (20). Thus, the PGGG/PG ratio provides a measure of the G→GGG charge-transfer rate compared with the G→8-oxoG oxidation rate. The distance dependence of the PGGG/PG ratio is studied by varying the number of (AT) base pairs from 1 to 16 between the G and GGG traps.

Three spectral functions were introduced for the donor G, the bridge adenines (A), and the acceptor GGG (Fig. S4). The energy gap between the peaks of the spectral functions was set to ΔG + λ where ΔG is the free energy of charge shift between the sites and λ is the reorganization energy. ΔG is the charge shift reaction free energy for donor G to A or GGG. The free energy change for G**A to GA** ET is +0.35 eV (19) and from G**(GGG) to G(GGG)** is −0.7 eV (46). Typical values for DNA ET range from 0.4 eV (nearest-neighbor) to 1.2 eV (four B units between D and A) (45, 47). Smaller free energy differences between G and GGG states were reported as well (ca. 0.08 eV) (48). Decreased trapping free energies can also be accommodated in the FR model.

The FR probabilities for Giese’s structures are calculated using sampling from both MD and distribution functions using the energetics shown in Fig. S4 and a normally distributed energy matching window randomly selected from a Gaussian distribution with zero mean and SD of 0.1 eV, as described above with G–A couplings of 0.043 eV and A–A couplings of 0.08 eV (44). The FR charge-transfer rate is modeled with Eq. 6, where τ is an adjustable parameter used to fit the absolute values of the yields.

To compare our simulations with the experimental chemical yield ratios (PGGG/PG), we use the kinetic model (49) suggested by Jortner and coworkers. In this model, the water-trapping rate for the holes on GGG is assumed to be much larger than the back charge transfer (CT) rate, i.e., all of the holes that arrive at GGG are trapped. Therefore, the yield ratio is determined by the ratio of the charge transport rate and the trapping rate of the single G, PGGG/PG ≈ kCT/kr. We set the trapping rate, to be ~2.0 × 10^9 s^-1, consistent with the earlier estimate of Jortner et al. (49). Giese and Spichty estimated the water-trapping rate to be as low as ~6.0 × 10^7 s^-1 (50), based on a tunneling rate through two B sites of 2.5 × 10^11 s^-1 (51).

The computed and experimental chemical yield ratios are shown in Table 1. In the short-distance regime, the calculated chemical yield ratios have an exponential decay parameter of β ≈ 0.5 Å^-1, in good agreement with experimental data. As the chain length grows beyond 3–4 bp, the hole transfer presumably becomes dominated by incoherent (hopping) transport, and the FR mechanism is no longer relevant.

Application of the FR Model to DNA Hairpins. We also used the coupling and site energy distribution functions described above in the FR model to explore charge transfer in stilbene-capped DNA hairpins studied by Lewis et al. (19, 41) (Fig. S5). In their experiments, hole transfer occurs between the photoexcited stilbene electron donor Sd and electron acceptor Sa separated by one to six AT bridging base pairs (19). In contrast to the Giese system, hole transfer between the stilbenes produces the charge-separated state Sa”/Sd”*. The electron hole attraction in that state creates a D–A charge separation energy ramp (Fig. S6; cf. ref. 21), in addition to the redox potential difference between the stilbenes and adenines.

The mean energies of the spectral functions at each site are computed from the analysis of Grozema et al.: \(E_{G} = E_{G}(4) - E_{G}(Sd) - E_{Sa}(Sd) - E_{Sa}(A^{2+}Sd^{+}) - \Delta E_{elst} \). Here, \(E_{G}(4) \) is the gas-phase ionization potential of adenine in the DNA stack, \(E_{G}(Sd) \) is the vacuum electron affinity of Sa, \(E_{Sa}(Sd) \) is the optical excitation energy, and \(E_{Sa}(A^{2+}Sd^{+}) \) is the D/A Coulomb interaction in the charge-separated state (21). The SDs of these energy distribution functions are set to 0.6 eV, similar to the values from Elstner’s QM/MM analysis of DNA (25). If the excited state has exicples character with partial delocalization onto the DNA, the site energies should be decreased.

Using the protocol described to treat site energy correlations, we calculated the matching probability for DNA hairpins (with one to three intervening ATs). The energy ramp produces large energy gaps between sites for systems with more than three AT bridging units, making the probability negligible to form a degenerate geometry at these larger distances. We therefore focus our study of the FR mechanism on Sa(A)Sd (n = 1, 2, 3) DNA hairpins. In the energy matching probability analysis for the Sa(A)Sd DNA, the nearest-neighbor coupling is taken to be normally distributed around zero with a SD of 0.1 eV (44). The FR charge-transfer rate is modeled with Eq. 6, where τ is an adjustable parameter used to fit the absolute values of the rates. The computed β-value is consistent with the measured kinetic data (Table 2).

Rate-Limiting Time Scales. The distance dependence of the FR matching probability \(P_{match}(N) \) is consistent with the measured distance dependence of the charge shift yields (Table 1) and charge separation rates (Table 2) at short distances. We have not

Table 1. Computed \(P_{match} \), experimental yield ratios, and fitted \(k_r \) values (with \(k_r \) the water-trapping rate) for data of Giese et al. (20) (see Scheme S1)

<table>
<thead>
<tr>
<th>Bridge units</th>
<th>(P_{match})</th>
<th>(P_{GGG}/P_G)</th>
<th>(k_r \times 10^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.8 × 10^-3</td>
<td>250</td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>8.5 × 10^-4</td>
<td>30</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>2.1 × 10^-4</td>
<td>4</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>6.0 × 10^-5</td>
<td>3.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>
assumed a particular ET regime (adiabatic or nonadiabatic), and it is remarkable that the slope of the distance dependence of DNA rates and yields is predicted successfully by the MD-derived $P_{match}(N)$. Our only fitting parameter is τ in Eq. 6. Recall that the time scale of the rate-limiting step (τ, in Eq. 6) in the generalized kinetic scheme of [5], is related to τ by $(\tau/\tau_n) \propto (t \ln \tau)$. Regardless of the reaction adiabaticity. Assuming $\tau \approx 1/3$ to 1/6 for the DNA systems studied here, τ is in the tens of femtoseconds to picoseconds range for the photoinduced charge separation experiments, and τ_n is in the hundreds of nanoseconds to tens of microseconds for the charge shift (yield) experiments. When step(s) in [5] determine τ_n. We do not expect τ_n to depend strongly on distance, so it is not likely to be equal to τ_n. τ_n could be the origin of τ in the charge separation experiments because the fitted τ (Table 2) is as fast as tens of femtoseconds. However, we also expect τ_n to be distance dependent ([5]), because $\Delta G_{act}(N)$ is distance dependent and so is the attempt frequency to form the N-state FR. Therefore, $k_{\tau \sigma}$ could determine τ in both experiments, and it could be the rate-limiting step for FR (we expect $k_{\tau \sigma}$ to differ for charge shift and charge separation reactions). For ultrafast ET, it is possible that the time scale determining the ET rate prefactor will differ for different observation time windows, as ET active species can be depleted and replenished on multiple time scales.

In summary, the FR mechanism is compatible with the slope of the distances dependences of the rates and yields in the charge separation and charge shift experiments at shorter distances. However, our analysis cannot resolve whether the FR channel is rate limited by the time scale of D–B–A transport in the N-state resonance conformation or by the activation rate to the N-state resonance conformation. Regardless of the rate-limiting kinetic step, the signatures of the FR mechanism are the exponential rate decay with distance and a transient carrier population on the bridge.

Conclusions

The FR probability drops approximately exponentially as a function of distance, so FR transport has a signature that can be mistaken for tunneling. This theoretical framework provides a scheme to quantify ideas of how stacking dynamics may influence the coherence of charge transfer. The FR mechanism is consistent with observed ET rates in hole transfer experiments of Giese et al. and Lewis et al. FR explains exponential distance decay of rates in the presence of transient D and A carrier populations that do not sum to unity as they must in the superechange regime.

The redox energy-matching probability depends critically on nearest-neighbor couplings and energy gaps, as well as on their fluctuations. Level matching can be substantial, even when the D, B, and A sites are nonresonant on average. Fluctuations are expected to depend on temperature, structure, flexibility, and coupling pathway interferences. As such, one should be able to manipulate the energy-matching propensity. In particular, the FR model predicts approximately exponential distance dependence for the ET rate with decay exponent $\Phi \propto \ln(\sigma E/V_{nm}) \propto \ln(\sqrt{2\lambda T/V_{nm}})$.

This characteristic behavior provides a specific testable signature for the FR mechanism.

Disrupting energy level matching during electron transmission, combined with relaxation, can produce multirange hopping or mixed hopping and superexchange (30, 40). Future studies need to track the carrier dynamics that follows the disruption of resonance, to set more precise bounds on the admixture of coherent, incoherent, and mixed transport. The lessons of the present study are that FR (i) obviates the need to invoke tunneling in short distance DNA ET, (ii) rationalizes the observation of electron arrival at the A population without the concomitant reduction of the D population in a DNA hairpin that also displays steep distance-dependent ET rates, and (iii) suggests new approaches to controlling ET by varying site energy and coupling distributions. Building further on the isomorphism between energy and ET kinetics (16), it seems likely that the framework described here may be of use for analyzing coherences among excitonic states of artificial and natural light-harvesting complexes (52–59).

Table 2. Computed P_{match} experimental hole arrival rates of Lewis et al. (19), and fitted τ values

<table>
<thead>
<tr>
<th>Bridge units</th>
<th>P_{match}</th>
<th>k_{Expt}</th>
<th>τ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_{match}</td>
<td>k_{Expt}</td>
<td>τ</td>
<td>τ</td>
</tr>
<tr>
<td>1</td>
<td>7.6×10^{-3}</td>
<td>580</td>
<td>13.1</td>
<td>13.1</td>
</tr>
<tr>
<td>2</td>
<td>2.1×10^{-4}</td>
<td>27</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>3</td>
<td>3.5×10^{-5}</td>
<td>3.4</td>
<td>15.6</td>
<td>15.6</td>
</tr>
<tr>
<td>4</td>
<td>1.3×10^{-5}</td>
<td>1</td>
<td>13.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

20. Giese B, Amaudrut J, Köhler A-K, Spormann M, Wessely S (2001) Direct observation of redox active nearest-neighbor couplings and energy gaps, as well as on their fluctuations. Level matching can be substantial, even when the D, B, and A sites are nonresonant on average. Fluctuations are expected to depend on temperature, structure, flexibility, and coupling pathway interferences. As such, one should be able to manipulate the energy-matching propensity. In particular, the FR model predicts approximately exponential distance dependence for the ET rate with decay exponent $\Phi \propto \ln(\sigma E/V_{nm}) \propto \ln(\sqrt{2\lambda T/V_{nm}})$.

