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ABSTRACT: Early detection of immunoglobin G (IgG), a
glycoprotein antibody produced in the serum due to various
infections, is of paramount importance that will enable effective
treatment, immunity assessment, and assist in monitoring out-
breaks of contagious diseases. This work demonstrates the
transverse magneto-optic Kerr effect (T-MOKE) based magneto-
plasmons excited on a composite ferromagnetic/plasmonic grating
as a highly sensitive, single wavelength, and target specific
biosensing platform. The sharp T-MOKE sensitivity curve
corresponding to reduced fwhm results in a two orders of
magnitude enhancement in the resolving power compared to
conventional propagating surface plasmon polariton (SPP), which
is pivotal in identifying minute fluctuations in specific biomolecular
concentrations. An order of magnitude improvement in antibody
immunoglobin G (IgG) detection limit is observed compared to the SPP based sensing. A detection limit down to 10 ng/mL (66
pM) is achieved using the proposed T-MOKE technique. The results obtained provide compelling evidence of the significantly
superior sensitivity and resolving power of the T-MOKE technique for the detection of Human IgG, and it is envisioned that this
spectroscopy free, single wavelength measurement approach can be extended to detect biologically/chemically relevant molecules at
lower concentrations for early biomedical diagnosis and therapy.
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Biomolecule sensing has been an area of intensive research
over the past decades and has fundamentally revolu-

tionized medical diagnosis and therapy.1−4 Currently, the
pressing objective for biomolecule sensing is to develop
techniques that offer higher sensitivity, lower false positive, and
high throughput.5−10 This enables rapid early detection of
biomolecules (for example, antibody), which is critical to
prevent outbreaks of infectious diseases like SARS-CoV-2.11−13

Immunoglobin G (IgG) is one such antibody found in our
blood that is produced because of an infection as a secondary
immune response.14−17 Detection of IgG is also a crucial
component for determining evaluations of allergies and
autoimmune disorders. While the total concentration of IgG
found in the adult plasma is about 7 mg/mL,18 IgG antibodies
generated from different infections have significantly lower
concentrations at the onset and exhibit unique chemical
signatures.19 This underscores the need for an infection
specific detection of IgG at low concentrations with high
sensitivity.20−23 Conventionally, antibody detection is done
using the techniques like polymerase chain reaction (PCR),
enzyme-linked immunosorbent assay (ELISA), or Western blot
that are reliable, however, they are time-consuming processes,
prone to contamination, and require high volumes of samples
for definitive evaluation.24−27 Alternatively, optical techniques
for detection of biomolecules offer the benefits of faster sensing

and can be done using a fraction of the sample quantity.28−34

With label-free detection, the concerns of affecting antibody
binding affinities and introducing undesired interactions or
modifications is eliminated. This removes the restrictions that
tag labels such as dyes give, where it can only see the binding at
the very end or can potentially modify the sample outside of
its’ natural state.
Optical sensing techniques utilize fiber Bragg gratings,

whispering gallery modes, plasmonics as various platforms for
detection.35−39 Both localized (LSP) and propagating surface
plasmons (SPP) have been investigated for sensing,40,41 with
comparable sensitivity to single-molecule binding events.39

This is primarily due to the relatively sharp SPP resonance
bandwidth and phase-matching requirements. Fluctuations in
the surrounding refractive index changes the phase-matching
condition and subsequently the resonance peak shifts. By
coupling a magnetic material to the plasmonic systems, the
combined magneto-optic properties result in the generation of
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magnetoplasmons under special circumstances that can be
used as a probe to detect a very low concentration of
biomolecules.42−48 The sensing properties and magneto-
optical activity are yet to be fully explored in comparison to

conventional SPP sensing platforms. Typically, Kretschman
geometry49,50 is implemented to excite SPP on a noble metal
that is layered with a soft ferromagnet and optically coupled to
a prism to produce magnetoplasmons, which makes the sensor

Figure 1. Transverse magneto-optic Kerr effect. (a) Schematic representation of the magneto-optic sensor platform. (b) Effect of grating height on
the specular reflectance (left) and T-MOKE (right), as obtained from FDTD simulations.

Figure 2. T-MOKE optimization. (a) 3D reconstruction of AFM image of the nanoimprinted grating surface and (b) SEM image of the fabricated
samples with 60 nm grating height. (c) SPP curves as a function of angle of incidence with and without magnetic field. Middle panel shows
magnified image. Right panel shows the calculated T-MOKE signal from the SPP curves. (d) Out-of-plane electric field profile at 22° (left) and 27°
(right) angle of incidence for cases B = 1 (top), B = 0 (middle), and their difference (bottom)
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configuration bulky.51 On the other hand, it is possible to
excite SPP assisted magnetoplasmons on grating surfaces by
sandwiching a ferromagnetic material in the thin-film grating
stack that are highly compact.42,52−54 In this work, for the first
time we demonstrate an ultrasensitive magneto surface
plasmon resonance (MOSPR) based direct detection of IgG
antibody. We implement the transverse magneto optic Kerr
effect (T-MOKE) for MOSPR generation on a trimetal Au/
Fe/Au layered 1D grating. The appeal of the transverse
geometry lies in the simplicity of the optical setup, where we
track the angular response of the intensity of the single
wavelength reflected light (λ = 655 nm), eliminating the need
of spectroscopic measurement. We demonstrate that by using
the MOSPR technique, we can improve sensitivity by two
orders of magnitude and attain a one order lower detection
limit than what is achievable using traditional SPP.
Figure 1a shows a schematic of the transverse magneto-optic

Kerr measurement setup. The functionalized 1D grating
surface is placed between two electromagnets such that the
grating lines are parallel to the direction of the magnetic field.
The magnetoplasmons are excited on a Au/Fe/Au trilayer
structure where an iron layer that is sandwiched between two
gold layers. A p-polarized 655 nm laser is incident on the
sample and the zeroth order light reflected from the sample is
measured using a silicon detector. In the apparatus, the
detector is stationary while the sample and laser rotate by θ
and 2θ, respectively for the goniometric measurement. In order
to improve the signal-to-noise ratio, the incident light is
modulated at a fixed frequency (1167 Hz) and the signal from
the silicon detector is measured using a lock-in-detector. The
1D grating surface is fabricated based on a simple nano-
imprinting technique. A large area (4 × 4 mm2) master 1D
grating pattern was written using direct laser lithography on an
ITO-coated glass slide. Following this, a PDMS stamp was
prepared from the master, which was used as a mold for
nanoimprinting the 1D grating surface on a 150 nm thick SU-8
polymer film spin coated on a glass slide. Subsequently, the
trilayer bottom-Au (50 nm)/Fe (20 nm)/top-Au (35 nm) was
electron-beam evaporated on the grating surface to complete
the sample fabrication. In order to excite propagating surface
plasmons (SPP) on the dielectric-metal interface the period of
the grating was chosen such that the energy and momentum
wave vector of the incident light is conserved and equals the
plasmon wave vector as eq 1.
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Here, εm and εd are the dielectric constants of the metal and
dielectric, respectively, θ is the angle of incidence and d is the
grating periodicity. For εd = 1 for air and d = 1100 nm, eq 1 is
satisfied when light of λ = 655 nm is incident at 26° for
diffraction order n = 1. Figure 2a,b shows the 3D rendered
AFM image of the grating surface and an SEM image for a
sample with grating height of 60 nm, respectively. We
performed FDTD simulations to investigate the effect of
grating height on the line form of the SPP curve as a function
of angle of incidence as shown in Figure 1b (left). To make the
FDTD predictions accurate, the simulated structure was
generated to closely resemble the grating line profile of the
fabricated sample as obtained from AFM topography images
(Figure 2a). FDTD simulations predict a shallow absorption of
∼6% for a grating height of 40 nm, whereas for a grating height

of 80 nm, the line form becomes asymmetric as can be seen in
the SI, Figure S2. Therefore, we chose an intermediate grating
height of 60 nm that yields a symmetric SPP reflection peak at
θ = 26° with a fwhm of 2° and ∼12% absorption.
The dielectric permittivity tensor of the composite Au/Fe/

Au layer is given by eq 2. In the absence of magnetic field (B =
0), the off-diagonal element g = 0. However, when a magnetic
field (B = 1) is applied along the transverse direction, g ≠ 0
due to the cross coupling between E and B fields.42
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Here, the off-diagonal terms account for the magneto-optical
(MO) response of a material. Due to the weak MO properties
of gold, its off-diagonal terms are negligible. However, the
complex MO constant of iron55,56 (g = −0.25 + i0.625) has a
significant effect on SPP generated on the Au-air interface. As
shown in Figure 2c (left), in the presence of the magnetic field,
the momentum of the propagating surface plasmons is
modified, thereby altering the intensity of the reflected light
for a given angle of incidence. This renders a shift in the angle
(θ) corresponding to the SPP peak (Figure 2c, middle). Here,
we take advantage of the coupling of the excellent plasmonic
properties of Au with the strong MO response of the
underlying magnetic Fe layer, that is, utilizing magneto-
plasmons (MOSPR) for biomolecular sensing. This coupling
critically depends on top Au layer thickness. Following the
finite difference time domain simulation this coupling is
optimized. From Figure S2, we found that top Au layer
thickness of 35 nm results in a symmetric T-MOKE signal with
enhanced amplitude.

‐ =
+ − −
+ + −

R M R M

R M R M
T MOKE

( ) ( )

( ) ( )
pp pp

pp pp (3)

By using eq 3, one can quantify the T-MOKE, where Rpp is
the reflectance of the p-polarized light and ±M corresponds to
the magnetization direction of the Fe layer for ±B fields,
respectively. Equation 3 yields the signature Fano line-shape of
the MOSPR curves, as shown in Figure 2c (right). The FDTD
simulated T-MOKE curves for different grating heights (Figure
1b, right) show the strongest MOSPR signal for a grating
height of 60 nm, which is consistent with the symmetric SPP
line form. To elucidate the presence of MOSPR, in Figure 2d,
we show the out-of-plane electric field profile for two angles of
incidence, (i) 22° and (ii) 27°, which corresponds to the first
plasmon resonance angle. In each of these cases, the field
profiles for B = 0 and B = 1 are shown in the top and middle
panel. The simulation was done over 4 periods for the better
visualization of the electric field. It is evident that the intensity
of light coupling at the Au/Air interface at 22° is weak
compared to the case of light being incident at 27° where the
SPP mode is supported, as per eq 1. The bottom panel shows
the field profile corresponding to the MOSPR, which is
obtained by taking the difference |EZ|B=1 − |EZ|B=0. This
highlights the enhanced T-MOKE signal at 27° arising from
the magneto-optic coupling of the SPP, that is, MOSPR at the
Au/Air interface of the grating surface.
The evanescent nature of both SPP and MOSPR makes

them highly susceptible to changes in the local dielectric
constant of the Au/Air interface. We investigated the effect of
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varying thickness (2−10 nm) of Al2O3 on the samples to
characterize the sensitivity of the SPP and MOSPR on the
grating surface. Al2O3 has a dielectric constant of 8.5 (at λ =
655 nm); therefore, by gradually increasing the thickness of
Al2O3, we induce a controlled change in the effective
permittivity that the incident light experiences, which manifests
as a shift in the peak location from that of the bare sample. For
this study, we used a sample with a grating height of 60 nm,
and before every measurement, an additional 2 nm Al2O3 layer
was deposited by ALD until the total thickness was 10 nm. The
Al2O3 deposition was done at 80 °C to prevent the grating
surface from being deformed due to thermal deformation in
the SU-8 polymer layer on which the nanoimprint was done. In
Figure 3a, we overlay the FDTD simulated and experimentally
measured SPP curves for the sample with 10 nm thick Al2O3
layer. We applied a magnetic field of ±240 Oe to saturate the
magnetization of the Fe layer (Figure S1) before recording the

SPP curves for respective magnetic orientations. Using eq 3,
we calculated the T-MOKE response curves and overlaid them
(Figure 3b), thereby exhibiting a reasonably good agreement
between simulation and experiment. As the Al2O3 thickness is
increased, we observe a consistent shift in the SPP peak
location from 26.6° for the bare sample to 28° for a 10 nm
Al2O3 (Figure 3c). For our analysis, the corresponding T-
MOKE response curves for each Al2O3 thickness were
calculated and fitted to a Fano line form, as shown in Figure
3b. Therefore, we obtain the precise angle at which the T-
MOKE signal changes sign, associated with the crossover of
the two SPP curves, obtained from the ±B. We attribute the
shift in the angular location of the crossover point to the
sensitivity of the MOSPR to a varying effective index of
refraction. This crossover point can be better visualized by
simply taking the inverse of the magnitude of the T-MOKE
signal, as shown in Figure 3d. Consequently, the MOSPR

Figure 3. Sensor characterization. Experimental and FDTD simulated (a) SPP and (b) MOSPR curves for 10 nm Al2O3 thicknesses. (c) SPP
curves and (d) inverse of MOSPR curves as a function of Al2O3 thickness. (e) Figure of merit for MOSPR and SPP as a function of Al2O3
thickness.

Figure 4. Sensor fabrication. (a) Schematic representation of the biofunctionalization process of the MOKE sensors. (b) Angular shift (left) FoM
of SPP and MOSPR peak location (right) as a function of IgG concentration.
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response curve appears as a sharp peak with a fwhm that is
determined by the slope of the T-MOKE signal (Figure 2b)
near the crossover point.
Generally, the usefulness of a sensor or sensing technique is

characterized by its ability to resolve minute changes in a
signal. For a sensing technique such as this, where one tracks
the relative shift in the location of the peak as a function of
angle of incidence (Δθ), the figure of merit (FoM) that
represents its resolving power is given by the ratio of Δθ to the
fwhm of the peak function. In other words, the sensing
platform with higher FoM = Δθ/fwhm offers improved
resolution in detecting Δθ. Comparing the respective curves
for SPP and MOSPR, shown in Figure 3c,d, it is evident that
the MOSPR technique yields peaks with a higher Q-factor,
resulting in an improvement of FoM over two orders of
magnitude compared to conventional SPP (Figure 3e).
Therefore, by implementing the T-MOKE technique, we
obtain a better resolution in the determining an increase in
Al2O3 thickness than the conventional SPP method.
Next, we show a comparative study between the two sensing

methods (SPP vs MOSPR) for biomolecular detection,
namely, human IgG. The grating sample was treated for
functionalization using a technique similar to that reported
earlier41,57−59 and described in the SI for the present context.
We prepared several samples with varying concentrations of
secondary IgG antibody from 10 ng/mL (66 pM) to 1 mg/mL
(6.6 μM; Figure S3). In Figure 4b (left) we show the evolution
of the peak location as a function of IgG concentration for
both SPP and MOSPR sensing methods. We studied samples
with seven concentrations of anti-IgG to obtain Figure 4b, with
the objective to compare the sensitivity of the SPP and
MOSPR techniques. This is in good agreement with other
reports where it is seen that the MOSPR exhibits overall higher
Δθ than SPP for a given change in the concentration.48 While
both show an appreciable peak shift for higher concentrations,
below 100 ng/mL, we find that the slope of the Δθ versus IgG
concentration curve for SPP distinctly drops, thereby
establishing that, at lower concentration changes, the
MOSPR technique is superior. The resolving power of the
two techniques is expressed in Figure 4b (right). Consistent
with our study on varying Al2O3 thicknesses, we find that the
MOSPR technique offers a two-order improvement in
resolving changes in the human IgG concentration. For better
visualization of the FoM for the SPP technique, we provide a
magnified image in the inset. Although the FoM for SPP is
responsive to different concentrations down to 66 pM, the
diminishing detection limit of this technique is evident by the
reduced slope of the curve below FoM of 0.1. On the other
hand, the FoM for the MOSPR curve retains the same slope as
a function of concentration down to 66 pM. Therefore, for a
consistent comparison with the SPP technique, we extrapolate
the MOSPR curve (as shown) along the y-axis to a FoM of 0.1,
signifying the detection limit of a technique. We estimate the
limit of detection for the MOSPR technique to be 1 ng/mL
(6.6 pM) associated with a FoM of 0.1. We did not decrease
the concentration below 10 ng/mL because the sensitivity of
the SPP technique is lost, and therefore, a comparison between
the SPP and MOSPR techniques was not possible at a
concentration of 1 ng/mL. Furthermore, by taking advantage
of the label-free detection process, direct detection of
biomolecules from plasma can be easily achieved through the
integration of microfluidic channels onto the sensor, as
demonstrated in our previous work.33

■ CONCLUSION

In conclusion, we have demonstrated a remarkable enhance-
ment in sensitivity of biomolecule detection using magneto-
plasmons. The appeal of the technique lies in the simplicity of
the optical setup, where we track the angular response of the
intensity of the single wavelength reflected light, eliminating
the need for spectroscopic measurement, which is a bottleneck
for low cost, high-throughput biosensing. We show that, by
using the MOSPR technique, we can improve sensitivity by
two orders of magnitude and attain one order improvement in
the detection limit than what is achievable using traditional
SPP. This is established by demonstrating the lower detection
limit of the IgG antibody molecule. For the same FoM of 0.1,
the lowest detection limit of T-MOKE is ∼1 ng/mL (6.6 pM),
which is an order improvement over the conventional SPP
technique with a detection limit of 10 ng/mL (66pM). While
this study focuses on a human IgG, the single wavelength T-
MOKE sensors can be implemented for high-resolution
sensing of other biomolecules, gases, and chemical entities
based on an imprinted simple 1D grating platform without
needing expensive spectrometers.

■ EXPERIMENTAL SECTION

Functionalization of the Sensor. The grating sample was
treated for functionalization as follows. First, (3-aminopropyl)
triethoxysilane (APTES) solution used to immobilize the
immunoglobulin G (IgG) antibodies was prepared.41,57−59 The
solution consisted of 1.9 mL of pure ethyl alcohol, 0.1 mL of
APTES, and 0.1 mL of DI water. The APTES and DI water
were added slowly, drop by drop, to prevent the APTES from
precipitating. This mixture was stirred on a hot plate for 2 h at
700 rpm and then diluted by adding 100 μL of APTES
solution to 900 μL of regular ethyl alcohol. Thereafter, 0.15
mL of the new solution was added to 1.35 mL of regular ethyl
alcohol. Prior to the application of the APTES solution, the
patterned samples were cleaned with ethanol and water, dried
with nitrogen, and then cleaned with an oxygen plasma. After
the samples were cleaned, they were each covered in 150 μL of
APTES solution and then allowed to incubate for 1 h at room
temperature. After incubation, the excess APTES solution was
rinsed with water and dried in nitrogen. The samples were then
baked on a hot plate for 1 h at 80 °C. During this 1 h bake, the
primary antibody solution was prepared by diluting anti-human
IgG in a phosphate-buffered saline solution (PBS). The diluted
primary antibody solution was then mixed with 4 mg/mL of
EDC in a 99:1 ratio for 15 min at 37 °C to enable coupling
activation. Once the baking was finished, 12 μL of the primary
antibody solution was added to the samples. Polydimethylsi-
loxane (PDMS) wells were used to keep the antibody solution
on the pattern. After the primary antibody solution was added,
the samples were set in an oven to incubate for 1 h at 37 °C.
During this time, the secondary antibody solution was
prepared by diluting human IgG in PBS. After the primary
antibody solution has finished incubating, excess solution is
cleaned off with a rinse of PBS and then water. Excess water is
sucked out of the PDMS well with first a pipet and then by an
absorbent cloth. After drying, 12 μL of the secondary antibody
solution was added into the same PDMS well. The samples
were then incubated at room temperature for 1 h. After
incubation, the excess secondary antibody solution was cleaned
by gently submerging the sample into PBS and water instead of
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a rinse (Figure 4a). Following this, the samples were dried
under ambient conditions.
Direct Laser Lithography. Masters for the nanoimprint

lithography process were created by direct laser writing using a
Nanoscribe GT (Nanoscribe, GmbH) equipped with a galvo
scanner. A negative photoresin, IP-Dip was drop-casted on an
ITO-coated glass slide to perform the direct laser write.
Following the write process, the master was developed in
propylene glycol monomethyl ether acetate (PGMEA, Sigma-
Aldrich) for 20 min and then in IPA for 2 min. Variations in
line width and relief depth of the grating were optimized by
adjusting the intensity of the exposing beam and voxel height
with respect to the surface of the substrate.
FDTD Modeling. FDTD simulations of the grating to

investigate the SPR and MOSPR were done using a
commercial software package (Lumerical FDTD, Lumerical
Solutions Inc.).
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