Skip to main content

Peer Reviewed Journal and Conference Papers

2024

Journal

  1. J. Manrique Castro, N. Azim, N. Castaneda, E. Kang, and S. Rajaraman*, “Microfluidic Biosensor for In Vitro Electrophysiological Characterization of Actin Bundles”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 2024 (accepted and available online): https://ieeexplore.ieee.org/document/10477650

Conference

  1. P. Morales-Cruz, M. Tregansin, J. Fnu, J. Manrique Castro and S. Rajaraman “Biomimetic Phase-Change Microsystems for Breath Condensate based Point of Care Diagnostics”, Proc. of IEEE MEMS 2024, Austin, Texas, Jan 2024: https://ieeexplore.ieee.org/document/10439320

2023

Journal

  1. P. Borjian, M. Chimerad, P. Pathak, A. Childs S. Rajaraman, and H.J. Cho, “Electrochemical Sensors for Lead Ion Detection using Sodium Alginate Crosslinked with 2-Acrylamido-2-Methyl Propane Sulfonic Acid and Aluminum Microparticles” IEEE Sensors Letters, 7, 9, 2023: https://ieeexplore.ieee.org/document/10225253
  2. C. Didier, D. Fox, K. Pollard, A. Baksh, N. Iyer, A. Bosak, Y. Li Sip, J. Orrico, A. Kundu, R. Ashton, L. Zhai, M. Moore, and S. Rajaraman “Fully Integrated 3D Microelectrode Arrays with Polydopamine-Mediated Silicon Dioxide Insulation for Electrophysiological Interrogation of a Novel 3D Human, Neural Microphysiological Construct”,ACS Applied Materials and Interfaces, vol. 15 (31), 37157 – 37173, 2023https://pubs.acs.org/doi/10.1021/acsami.3c05788
  3. J. Manrique Castro, F. Sommerhage, R. Khanna, A. Childs, D. DeRoo and S. Rajaraman, “High-Throughput Microbead Assay System with a Portable, Cost-Effective Wi-Fi Imaging Module, and Disposable Multi-Layered Microfluidic Cartridges for Virus and Microparticle Detection and Tracking”, Biomedical Microdevices, 25, 21, 2023. https://link.springer.com/article/10.1007/s10544-023-00661-3#citeas
  4. C. Didier, J. Orrico, O. Cepeda Torres, J. Manrique Castro, A. Baksh and S. Rajaraman, “Microfabricated Polymer-Metal Biosensors for Multifarious Data Collection from Electrogenic Cellular Models”, Nature Microsystems and Nanoengineering, 9, 22, 2023. https://www.nature.com/articles/s41378-023-00488-1
  5. A. Bagde, S. Dev, L. Sriram, S. Spencer, A. Kalvala, A. Nathani, O. Salau, K. Mosley-Kellum, H. Dalvaigari, S. Rajaraman, A. Kundu and M. Singh, “Biphasic Burst and Sustained Transdermal Delivery in vivo using an AI-optimized 3D-Printed MN Patch”, International Journal of Pharmaceuticals, 2023, 122647. https://www.sciencedirect.com/science/article/pii/S0378517323000674
  6. A. Childs, J. Pereira, C. Didier, A. Baksh, I. Johnson, J. Manrique Castro E. Davidson, S. Santra, and S. Rajaraman, “Plotter Cut Stencil Masks for the Deposition of Inorganic and Organic Materials and a New Rapid, Cost Effective Technique for Antimicrobial Evaluations”, Micromachines 14, 1, DOI 10.3390/mi14010014, 2023. https://www.mdpi.com/2072-666X/14/1/14

Conference

  1. J. Manrique Castro, I. Johnson, and S. Rajaraman, “Multilevel Microchannel-based 3D Printed and Liquid-Metal Filled Microelectrode Array within a Multiphase Controlled Microchamber for Electrophysiological Studies”Proc. of the 22nd International Conference on Solid State Sensors, Actuators and Microsystems (IEEE Transducers 2023), Kyoto, Japan, June 2023.
  2. C. Didier , M. Garcia-Chalbaud, J. Orrico, J. Manrique Castro and S. Rajaraman, “Hybrid Microfabrication and Electrochemical Analysis of Nonagonal 2D/3D Microelectrode Arrays with Multi-metallic Interfaces”Proc. ofthe 22nd International Conference on Solid State Sensors, Actuators and Microsystems (IEEE Transducers 2023), Kyoto, Japan, June 2023.
  3. A. Childs, I. Johnson, B. Dubansky, and S. Rajaraman, “High-Throughput, Multimodal, Microchamber Biosensors for in vitro Localization of Killifish Cardiac Models”Proc. of the 22nd International Conference on Solid State Sensors, Actuators and Microsystems (IEEE Transducers 2023), Kyoto, Japan, June 2023.
  4. C. Didier, K. Pollard, A. Bosak, N. Iyer, R. Ashton, M. Moore and S. Rajaraman, “Eletrophysiological Characterization of a Novel, Transwell Transferred Human Neural Nociceptive Microphysiological Circuit Atop Polymer/Steel 3D Microelectrode Arrays”Proc. of the 22nd International Conference on Solid State Sensors, Actuators and Microsystems (IEEE Transducers 2023), Kyoto, Japan, June 2023.
  5. J. Manrique Castro, I. Johnson, and S. Rajaraman, “Microfabrication and Characterization of Micro-Stereolithographically 3D Printed and Double Metallized Bioplates with 3D Microelectrode Arrays for in vitro Analysis of Cardiac Organoids”, Proc. of the 36th International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2023), Munich, Germany, January 2023. [BEST POSTER AWARD NOMINEE] https://ieeexplore.ieee.org/document/10052547

2022

Journal

  1. N. Azim, J. Orrico, D. Appavoo, L. Zhai and S. Rajaraman, “Polydopamine Surface Functionalization of 3D Printed Resin Material for Enhanced Polystyrene Adhesion Towards Insultation Layers for 3D Microelectrode Arrays (3D MEAs)”, RSC Advances, 2022, 12, 25605-25616. https://pubs.rsc.org/en/content/articlelanding/2022/ra/d2ra03911g
  2. J. Manrique Castro and S. Rajaraman, “Experimental and Modeling Based Investigations of Process Parameters on a Novel, 3D printed and Self-Insulated 24-well, High Throughput 3D Microelectrode Array Device for Biological Applications”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 31 (3), pp. 358 – 371, 2022. https://ieeexplore.ieee.org/document/9744493

Conference

  1. J. Manrique Castro, F. Sommerhage, S. Piranej, D. DeRoo, K. Salaita and S. Rajaraman, “Multiplexing and Increasing Throughput of Rolosense Assay utilizing Cost Effective WiFi Imaging and Disposable Microfluidics Chips for SARS CoV2 Detection”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022. https://hh2022.org/
  2. C. Didier, J. Orrico, O. Cepeda-Torres, A. Baksh, J. Manrique Castro, and S. Rajaraman, “Polymer and Stainless Steel-based 3D Microelectrode Arrays (3D MEAs) with Penta-Modal Sensing Capabilities for the Investigation of Electrogenic Cells”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022. https://hh2022.org/
  3. C. Hart, F. Sommerhage, and S. Rajaraman, “A Fully Sterile, Cost-Effective, Rapidly Assembled 3D Printer for Bioprinting of Electrogenic Cell Constructs to Define Functional Layers and Enhance Sensitivity of Cell-based Biosensors”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022. https://hh2022.org/
  4. C. Didier, D. Fox, A. Baksh, K. Pollard, N. Iyer, A. Bosak, Y. Li Sip, J. Orrico, R. Ashton, M. Moore, L. Zhai, and S. Rajaraman, “Stable, Electron-beam Sublimated, Nanostructured Silicon dioxide on Polycarbonate and Stainless Steel as a Bioadherent Dielectric Towards Neural Microphysiological Systems”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022. [BEST POSTER AWARD NOMINEE]. https://hh2022.org/
  5. C. Didier, A. Kundu, and S. Rajaraman, “A Modular Microfabrication Approach with Multilayer, Micropillar 3D Interconnects utilizing DLP 3D Printing towards 3D Microelectrode Arrays and Complex Microsystems”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022. https://hh2022.org/
  6. J. Manrique Castro, and S. Rajaraman, “Constant Phase Element Modeling and Analysis of Multi-material, Micro-bullet Shaped, High-Throughput 3D Microelectrodes for In vitro Electrophysiological Applications”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022. https://hh2022.org/
  7. A. Childs, J. Pereira, A. Baksh, C. Didier, E. Davidson, S. Santra, and S. Rajaraman, “Rapid, Cost Effective, Plotter Cut Stencil Masks for the Deposition of Inorganic and Organic Materials and the Creation of a New Antibiotic Diffusion Test for Minimum Lethal Concentration Detection”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022. https://hh2022.org/
  8. C. Didier, A. Kundu, J. Manrique Castro, C. Hart and S. Rajaraman, “Compact Micro-Stereolithographic (uSLA) Printed, 3D Microelectrode Arrays (3D MEAs) with Monolithically Defined Positive and Negative Relief Features for In Vitro Cardiac Beat Sensing”, Proc. of the 35th International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2022), Hybrid, January 2022. [BEST POSTER AWARD WINNER]. https://ieeexplore.ieee.org/document/9699662

2021

Journal

  1. Kundu, L. McCoy, N. Azim, H. Nguyen, C. Didier, T. Ausaf, A. Sharma, J. Curley, M. Moore, and S. Rajaraman, “Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip”, ACS Biomater. Sci. Eng, 2021, 7, 7, 3018 – 3029. https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c01184
  2. C. Didier, A. Kundu, and S. Rajaraman, “Rapid Makerspace Microfabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) for Organ-on-a-Chip Models”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 30 (6), pp. 853-863, 2021. https://ieeexplore.ieee.org/document/9537907
  3. L. Santra, W. Furiosi, A. Kundu and S. Rajaraman, “A Minimally-Invasive 3D Printed Microneedle Array Applicator System (µNAAS) for Delivery of Therapeutics to Citrus Leaf Tissue”, Journal of Young Investigators, 39 (5), pp. 60-66, 2021. https://www.jyi.org/2021-june/2021/6/1/a-minimally-invasive-3d-printed-microneedle-array-applicator-system-naas-for-delivery-of-therapeutics-to-citrus-leaf-tissue
  4. A. Kundu, S. Langevin, A. Rozman, J. Patrone, L. Hamilton, and S. Rajaraman, “A Minimally Invasive, Micromilled, Microneedle Flexible Patch Array (µNFPA) for Transdermal Hydration Sensing”, Institute of Physics Journal of Micromechanics and Microengineering, vol. 31, 075007, 2021. https://iopscience.iop.org/article/10.1088/1361-6439/ac0322
  5. J. Choi, H. Lee, S. Rajaraman and D-H. Kim, “Recent Advances in Three-Dimensional Microelectrode Array Technologies for in vitro and in vivo Cardiac and Neuronal Interfaces”, Biosensors and Bioelectronics, 171 (2021), 112687, 2021. https://doi.org/10.1016/j.bios.2020.112687

Conference

  1. J. Manrique Castro, A. Kundu, A. Rozman, and S. Rajaraman, “Investigation of the Effect of Printing Angle and Device Orientation on Micro-Stereolithographically Printed and Self-Insulated, 24-well, High-Throughput 3D Microelectrode Arrays”, IEEE Sensors Conference, Virtual, Nov. 2021. https://ieeexplore.ieee.org/xpl/conhome/9639447/proceeding
  2. J. Orrico, A. Kundu, C. Didier, A. Bosak, M. Moore, and S. Rajaraman, “Fabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) with Tri-Modal (Electrical, Optical, and Microfluidic) Interrogation of Electrogenic Cell Constructs”, Proc. of the 21st International Conference on Solid State Sensors, Actuators and Microsystems (Transducers 2021), pp. 226-29, Virtual, June 2021. [BEST POSTER AWARD WINNER]. https://ieeexplore.ieee.org/document/9495381
  3. C. Didier, C. Rountree, J. Orrico, A. Kundu, N. Azim, H. Nguyen, S. Pasha, L. McCoy, J. Curley, M. Moore, and S. Rajaraman, “Fabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) with Edge Wrapped Metal Interconnects and 3D Printed Assembly Rig for Simultaneous Optical and Electrical Probing of Nerve-on-a-Chip Constructs”, the 34th International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2021), Virtual, Jan 2021. https://ieeexplore.ieee.org/abstract/document/9375313
  4. L. Santra, A. Kundu and S. Rajaraman, “A Flexible, Digital Light Processing (DLP) 3D Printed and Coated Microneedle Array (cµNA) for Precision Delivery of Novel Nanotherapeutics to Plant Tissue”, the 34th International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2021), Virtual, Jan 2021. https://ieeexplore.ieee.org/abstract/document/9375404

2020

Journal

  1. P Morales-Carvajal, A. Kundu, C. Didier, C. Hart, F. Sommerhage and S. Rajaraman, “Makerspace Microfabrication of a Stainless Steel 3D Microneedle Electrode Array (3D MEA) on a Glass Substrate for Simultaneous Optical and Electrical Probing of Electrogenic Cells”, RSC Advances, 2020, 10, 41577-87. https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra06070d#!divAbstract
  2. C. Hart, C. Didier, F. Sommerhage and S. Rajaraman, “Biocompatibility of Blank, Post-Processed and Coated 3D Printed Resin Structures with Electrogenic Cells”, Biosensors, 10, 152, 2020. https://www.mdpi.com/2079-6374/10/11/152
  3. C. Hart, K.S. Kumar, J. Li, J. Thomas, and S. Rajaraman, “Investigation of the Enhanced Sensitivity of Interdigitated Electrodes for Cellular Biosensing with Geometric, Nanostructured Surface Area and Surface Plasmon Resonance Modes”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 29 (5), pp. 1109-1111, 2020. https://ieeexplore.ieee.org/document/9159871
  4. H. Mansoorzare, S. Shahraini, A. Todi, N. Azim, S. Rajaraman and R. Abdolvand, “Liquid-Loaded Piezo-Silicon Micro-Disc Oscillators for Pico-Scale Bio-Mass Sensing”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 29 (5), pp. 1083-1086, 2020. https://ieeexplore.ieee.org/document/9143136
  5. C. Didier, A. Kundu, J. Shoemaker, J. Vukasinovic and S. Rajaraman, “SeedEZ Interdigitated Electrodes and Multifunctional Layered Biosensor Composites: A Paradigm Shift in the Development of In Vitro Biomicrosystems”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 29 (5), pp. 653-660, 2020. https://ieeexplore.ieee.org/document/9126794
  6. A. Kundu, P. Arnett, A. Bagde, N. Azim, M. Singh, and S. Rajaraman, “DLP 3D Printed Intelligent Microneedle Array (iµNA) for Stimuli Responsive Release of Drugs and it’s In Vitro and Ex Vivo Characterization”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 29 (5), pp. 685-691, 2020. https://ieeexplore.ieee.org/document/9126784
  7. A. Kundu, A. Rozman and S. Rajaraman, “Development of a 3D Printed, Self-Insulated, High-Throughput 3D Microelectrode Array (HT-3D MEA)”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 29 (5), pp. 1091-1093, 2020. https://ieeexplore.ieee.org/document/9126130
  8. C. Didier, D. DeRoo, A. Kundu, and S. Rajaraman, “Development of in vitro 2D and 3D Microelectrode Arrays and their Role in Advancing Biomedical Research”, (invited review paper) Institute of Physics Journal of Micromechanics and Microengineering, vol. 30, no. 10, 103001, 2020. https://doi.org/10.1088/1361-6439/ab8e91
  9. C. Didier, A. Kundu, and S. Rajaraman, “Capabilities and Limitation of 3D Printed Microserpentines, and Integrated 3D Electrodes for Stretchable and Conformable Biosensor Applications”, Nature Microsystems and Nanoengineering, 6, 15, 2020. Doi: 10.1038/s41378-019-0129-3. https://www.nature.com/articles/s41378-019-0129-3
  10. C. Hart and S. Rajaraman, “Low Power, Multimodal Laser Micromachining of Materials for Applications in sub-5um Shadow Masks and sub-10um Interdigitated Electrodes (IDEs) Fabrication”, Micromachines 11, 178, DOI 10.3390/mi11020178, 2020. https://www.mdpi.com/2072-666X/11/2/178

Conference

  1. C. Hart, K.S. Kumar, J. Li, J. Thomas and S. Rajaraman, “Nanofabricated, Multimodal, Interdigitated Electrode Biosensors with Impedimetric and Plasmonic Biosensing Modes”, the 30th Anniversary World Congress on Biosensors, Busan, South Korea, November 2020. https://www.elsevier.com/events/conferences/world-congress-on-biosensors
  2. M. Tirado, A. Kundu, L. Tetard and S. Rajaraman, “Digital Light Processing (DLP) 3D Printing of Millimeter-scale High Aspect Ratio (HAR) Structures Exceeding 100:1” the 33rd International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2020), Vancouver, Canada, Jan 2020. https://ieeexplore.ieee.org/document/9056357

2019

Journal

  1. H. Mansoorzare, S. Shahraini, A. Todi, N. Azim, D. Khater, S. Rajaraman and R. Abdolvand, “A Microfluidic MEMS-Microbalance Platform with Minimized Acoustic Radiation in Liquid”, IEEE Trans. In Ultrasonics, Ferroelectrics and Frequency Control, 67 (6), pp. 1210-1218, 2020. Doi: 10.1109/TUFFC.2019.2955402. https://ieeexplore.ieee.org/document/8910595
  2. A. Kundu, M. Campos, S. Santra, and S. Rajaraman, “Precision Vascular Delivery of Agrochemicals with Micromilled Microneedles (µMMNs)”, Nature Scientific Reports, 9:14008, 2019. https://www.nature.com/articles/s41598-019-50386-8
  3. N. Azim, A. Kundu, M. Royse, Y. Li Sip, M. Young, S. Santra, L. Zhai, and S. Rajaraman, “Fabrication and Characterization of a 3D Printed MicroElectrodes Platform with Functionalized Electrospun Nanoscaffolds and Spin Coated 3D Insulation Towards Multifunctional Biosystems”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 28 (4), pp. 606-618, 2019. https://ieeexplore.ieee.org/document/8709727
  4. A. Kundu, C. Nattoo, S. Fremgen, S. Springer, T. Ausaf and S. Rajaraman, “Optimization of Makerspace Microfabrication Techniques and Materials for the Realization of Planar, 3D Printed Microelectrode Arrays in under Four Days”, RSC Advances, 9, pp. 8949 – 8963, 2019. https://pubs.rsc.org/en/content/articlelanding/2019/ra/c8ra09116a#!divAbstract
  5. N. Azim, C. Hart, F. Sommerhage, M. Aubin, J. Hickman, and S. Rajaraman, “Precision Plating of Human Electrogenic Cells on Microelectrodes Enhanced with Precision Electrodeposited Nano-Porous Platinum for Cell-Based Biosensing Applications”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), 28 (1), pp. 50-62, 2019. https://ieeexplore.ieee.org/document/8604145

Conference

  1. A. Kundu, T. Ausaf, P. Rajasekaran and S. Rajaraman, “Multimodal Microfluidic Biosensor with Interdigitated Electrodes (IDE) and Microelectrode Array (MEA) for Bacterial Detection and Identification”, the 20th International Conference on Solid State Sensors, Actuators and Microsystems (Transducers-Eurosensors 2019), Berlin, Germany, June 2019. https://ieeexplore.ieee.org/document/8808696
  2. C. Didier, A. Kundu and S. Rajaraman, “Facile, Packaging Substrate-Agnostic Microfabrication and Assembly of Scalable, Metal, 3D Microelectrode Arrays for In vitro Organ on a Chip and Cellular Disease Modeling”, the 20th International Conference on Solid State Sensors, Actuators and Microsystems (Transducers-Eurosensors 2019), Berlin, Germany, June 2019. https://ieeexplore.ieee.org/document/8808364

2018

Journal

  1. C. Hart, A. Kundu, K. Kumar, S. Varma, J. Thomas, and S. Rajaraman, “Rapid Nanofabrication of Nanostructured Interdigitated Electrodes (nIDEs) for Long Term, in vitro Analysis of Human Induced Pluripotent Stem Cell Differentiated Cardiomyocytes”, Biosensors, 8(4), 88, 2018. https://www.mdpi.com/2079-6374/8/4/88
  2. S. Varma, K. Kumar, S. Seal, S. Rajaraman and J. Thomas, “Fiber-type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications”, Advanced Science, DOI: 10.1002/advs.201800340, 2018. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201800340
  3. A. Kundu, T. Ausaf and S. Rajaraman, “3D Printing, Ink Casting and Micromachined Lamination (3D PICLµM): A Makerspace Approach to the Fabrication of Biological Microdevices”, Micromachines 9(2), 85, doi. 10.3390/mi9020085, 2018. https://www.mdpi.com/2072-666X/9/2/85

Conference

  1. C. Didier, A. Kundu and S. Rajaraman, “From 3D to 4D: Integration of 3D Printed Structures for Fabrication of Multifunctional 4D Biological Microsensors for Lab-on-a-Chip and Wearable Applications”, the 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2018), Kaoshiung, Taiwan, Nov 2018. https://web.archive.org/web/20210630015528/https://cbmsociety.org/microtas/microtas2018/
  2. C. Hart and S. Rajaraman, “Multimodal Laser Micromachined Shadow Masks for Rapid Patterning of Sub-5µm Organic and Inorganic Layers for Lab-on-a-Chip Applications”, the 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2018), Kaoshiung, Taiwan, Nov 2018. https://web.archive.org/web/20210630015528/https://cbmsociety.org/microtas/microtas2018/
  3. N. Azim, N. Castaneda, A. Diaz, H. Kang and S. Rajaraman, “Multi-modal Microelectrode Arrays for the Investigation of Protein Actin’s Electro-Mechanosensing Mechanisms Toward Neurodegenerative Disease Models on a Chip”, the 18th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2018), Hilton Head, SC, June 2018. https://www.transducer-research-foundation.org/archive/hh2018/
  4. N. Azim, T. Ausaf, A. Kundu, L. Zhai, and S. Rajaraman, “Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays with Spin Coated Insulation and Functional Electrospun 3D Scaffolds for ‘Disease in a Dish’ and ‘Organ on a Chip’ Models”, the 18th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2018), Hilton Head, SC, June 2018. https://www.transducer-research-foundation.org/archive/hh2018/

2017

Journal

  1. C. Karnati, R.J. Aguilar, C. Arrowood, J.D. Ross and S. Rajaraman, “Micromachining on and of Transparent Polymers for Patterning Electrodes and Growing Electrically Active Cells for Biosensor Applications”, Micromachines 8(8), 250, DOI 10.3390/mi8080250, 2017. https://www.mdpi.com/2072-666X/8/8/250
  2. G.S. Guvanasen, L. Guo, R.J. Aguilar, A.L. Cheek, C.S. Shafor, S. Rajaraman, T.R. Nichols and S.P. DeWeerth, “A Stretchable Microneedle Electrode Array for Stimulating and Measuring Intramuscular Electromyographic Activity”, IEEE Transactions in Neural Systems and Rehabilitation Engineering, vol. 25, no. 9, 2017. https://ieeexplore.ieee.org/document/7745882

Conference

  1. T. Ausaf, A. Kundu and S. Rajaraman, “3-D Printing, Ink Casting and Lamination (3-D PICL): A Rapid, Robust, and Cost Effective Process Technology toward the Fabrication of Microfluidic and Biological Devices”, the 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2017), Savannah, GA, Oct 2017. https://www.microtasconferences.org/microtas2017/
  2. A. Kundu, S. Varma, J. Thomas, and S. Rajaraman, “Plasmonic Interdigitated Electrodes (PIDEs) for in vitro Analysis of Cells”, the 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2017), Savannah, GA, Oct 2017. https://www.microtasconferences.org/microtas2017/
  3. N. Azim, F. Sommerhage, M. Aubin, J. Hickman, and S. Rajaraman, “Precision Plating of Electrogenic Cells on Microelectrodes Enhanced with Nano-Porous Platinum for Cell-based Biosensing Applications”, 231st Meeting of the Electrochemical Society, New Orleans, LA, May – June 2017. https://www.electrochem.org/231

2016

Conference

  1. S. Rajaraman, “Wearable and Stretchable Three-Dimensional Microelectrode Arrays for Diagnostic and Implantable Applications”, Sensors Midwest Expo, Chicago, IL, 2016. https://www.sensorsconverge.com/
  2. P.E. Tyler and S. Rajaraman, “A 48-well Transparent Microelectrode Array Fabricated utilizing a Flexible “Wrapped Around” Interconnect Technology, IEEE Sensors Conference, Orlando, FL, 2016.https://ieeexplore.ieee.org/document/7808446
  3. Y.A. Patel, A.C. Willsie, I.P. Clements, R.J. Aguilar, S. Rajaraman and R.J. Butera, “Microneedle Cuff Electrodes for Extrafascicular Peripheral Nerve Interfacing”, IEEE EMBC, Orlando, FL, 2016.https://ieeexplore.ieee.org/document/7591053

Peer Reviewed Journal and Conference Papers (before 2016):

Journal

  1. G.S. Guvanasen, M.L. Mancini, W.A. Calhoun, S. Rajaraman and S.P. DeWeerth, “Polydimethylsiloxane Microstencils Molded on 3-D Printed Templates”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), vol. 23, no. 5, pp. 1045-53, 2014. https://ieeexplore.ieee.org/document/6870424
  2. P-C. Wang, S-J. Paik, S. Chen, S. Rajaraman, S-H. Kim and M.G. Allen, “Fabrication and Characterization of Polymer Hollow Microneedle Array using UV Lithography into Micromolds”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), vol. 22, no. 5, pp. 1041-53, 2013. https://ieeexplore.ieee.org/document/6549194
  3. S. Rajaraman, J.A. Bragg, J.D. Ross and M.G. Allen, “Micromachined Three-Dimensional Electrode Arrays for Transcutaneous Nerve Tracking”, Institute of Physics Journal of Micromechanics and Microengineering, vol. 21, no. 8 o85014 (13 pp.), 2011. https://iopscience.iop.org/article/10.1088/0960-1317/21/8/085014.
  4. B.A. Wester, S. Rajaraman, J.D. Ross, M.C. LaPlaca, and M.G. Allen, “Development and Characterization of a Packaged Mechanically Actuated Microtweezer System”, Sensors and Actuators A, vol. 167, no. 2, pp. 502-511, 2011. https://www.sciencedirect.com/science/article/pii/S0924424711000094
  5. S. Rajaraman, S-O. Choi, M.A. McClain, J.D. Ross, M.C. LaPlaca, and M.G. Allen, “Metal Transfer Micromolded Three-Dimensional Microelectrode Arrays (3-D MEAs) for in-vitro Brain Slice Recordings”, IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), vol. 20, no. 2, pp. 396-409, 2011. https://ieeexplore.ieee.org/document/5708161
  6. S. Rajaraman, S-O. Choi, R.H. Shafer, J.D. Ross, J. Vukasinovic, Y. Choi, S.P. DeWeerth, A. Glezer, and M.G. Allen, “Microfabrication Technologies for a Coupled Three-Dimensional Microelectrode, Microfluidic Array”, Institute of Physics Journal of Micromechanics and Microengineering, vol. 17, no. 1, pp. 163-171, 2007. https://iopscience.iop.org/article/10.1088/0960-1317/17/1/021
  7. S. Rajaraman, H-S. Noh, P.J. Hesketh and D.S. Gottfried, “Rapid, Low Cost Microfabrication Technologies toward Realization of Devices for Dielectrophoretic Manipulation of Particles and Nanowires”, Sensors and Actuators B, vol. 114, pp. 392-401, 2006. https://www.sciencedirect.com/science/article/pii/S0925400505005290
  8. S. Kumar, S. Rajaraman, R.A. Gerhardt, Z.L. Wang and P.J. Hesketh, “Tin Oxide Nanosensor Fabrication using AC Dielectrophoretic Manipulation of Nanobelts”, Electrochimica Acta, vol. 51, pp. 943-951, 2005. https://www.sciencedirect.com/science/article/pii/S0013468605006730
  9. S. Rajaraman and H. T. Henderson, “A Unique Fabrication Approach for Microneedles using Coherent Porous Silicon Technology” Sensors and Actuators B, vol. 105, pp. 443-448, 2005. https://www.sciencedirect.com/science/article/pii/S0925400504004745.

Conference

  1. Y.A. Patel, I.P. Clements, R.J. Aguilar, S. Rajaraman and R.J. Butera, “Upgrading the Standard Cuff Electrode: A Microneedle based Approach to Higher SNRs and Lower Stimulation Thresholds”, IEEE EMBS BRAIN Grand Challenges Conference, Washington DC, 2014. https://ieeexplore.ieee.org/document/7591053
  2. G.S. Guvanasen, A.L. Cheek, R.J. Aguilar, C.S. Shafor, S. Rajaraman, T.R. Nichols and S.P. DeWeerth, “A Stretchable Microelectrode Array for Electrically Interfacing with Muscle”, Biomedical Engineering Society Meeting, San Antonio, Texas, 2014.
  3. G.S. Guvanasen, R.J. Aguilar, C. Karnati, S. Rajaraman, T.R. Nichols and S.P. DeWeerth, “Development of a Stretchable, Penetrating Electrode Array for Measuring Intramuscular Electromyographic Activity”, IEEE Neural Engineering Conference, San Diego, California, November 2013.
  4. G.S. Guvanasen, R. Aguilar, C. Karnati, S. Rajaraman, T.R. Nichols and S.P. DeWeerth, “Development of a Stretchable Penetrating Electrode Array for Measuring Intramuscular Electromyographic Activity”, Micro-Total-Analysis Systems (MicroTAS 2013), Freiburg, Germany, 2013. https://www.microtasconferences.org/microtas2013/
  5. B.A. Wester, J.D. Ross, S. Rajaraman and M.G. Allen, “Packaging and Characterization of Mechanically Actuated Microtweezers for Biomedical Applications”, IEEE EMBC Conference, Minneapolis, MN, 2009. https://ieeexplore.ieee.org/document/5333335
  6. P-C. Wang, B.A. Wester, S. Rajaraman, S-J. Paik, S-H. Kim and M.G. Allen, “Hollow Polymer Microneedle Array Fabricated Photolithography Process Combined with Micromolding Technique”, IEEE EMBC Conference, Minneapolis, MN, 2009. https://ieeexplore.ieee.org/document/5333317
  7. S. Rajaraman, M.A. McClain, S-O. Choi, J.D. Ross, S.P. DeWeerth, M.C. LaPlaca and M.G. Allen, “Three-Dimensional Metal Transfer Micromolded Microelectrode Arrays for in-vitro Brain Slice Recordings”, IEEE Transducers 2007, Lyon, France, 2007. https://ieeexplore.ieee.org/document/4300364
  8. F. Herrault, C-H. Ji, S. Rajaraman, R.H. Shafer and M.G. Allen, “Electrodeposited Metal Structures in High Aspect Ratio Cavities using Parylene Molds and Laser Micromachining”, IEEE Transducers 2007, Lyon, France, 2007. https://ieeexplore.ieee.org/document/4300180
  9. S-O. Choi, S. Rajaraman, Y-K. Yoon, X. Wu and M.G. Allen, “3-D Patterned Microstructures using Inclined UV Exposure and Metal Transfer Micromolding”, Solid State Sensors, Actuators and Microsystems Workshop, Hilton Head, SC, 2006. https://www.transducer-research-foundation.org/archive/hh2006/
  10. S. Kumar, S. Rajaraman, Z.L. Wang and P.J. Hesketh, “Tin Oxide Nanosensor Fabrication using Dielectrophoretic Manipulation of Nanobelts”, Electrochemical Micro and Nano Technologies Conference (EMT 2004), Tokyo, Japan, 2004.
  11. S. Rajaraman, H-S. Noh, A. Choudhury, J. Street, P.J. Hesketh and D.S. Gottfried, “Stereolithography based Development of Dielectrophoretic Microchannels for Enrichment of Bio-particles”, 205th Meeting of the Electrochemical Society, San Antonio, TX, 2004. https://www.electrochem.org/205
  12. T. Juneau, T. Chen, T. Brosnihan, S. Rajaraman, K. Chau and M. Judy, “Single Chip 1×84 MEMS Mirror Array for Optical Telecommunication Application”, SPIE Conference on Micromachining and Microfabrication, San Jose, CA, 2003.

Conference Posters, Talks and Abstracts (at UCF)

  1. J. Manrique-Castro, I. Johnson, and S. Rajaraman, “Multiphase, User-Regulated Microchamber with Embedded Silver based Microelectrode Array, and Galinstan-filled Multilevel Microconduits for in vitro Electrophysiology of Organoids”, NanoFlorida 2023, Orlando, FL, March 2023.
  2. C. Didier, K. Pollard, N. Iyer, A. Bosak, J. Orrico, R. Ashton, M. Moore, and S. Rajaraman, “Polymer and Steel 3D Microelectrode Arrays for Electrophysiological Characterization of Human Neural Microphysiological Systems”, NanoFlorida 2023, Orlando, FL, March 2023.
  3. A. Childs, I. Johnson, B. Dubansky and S. Rajaraman, “High Throughput, Multimodal, Microchamber Biosensors for in vitro Selective Localization of Killifish Cardiac Models”, NanoFlorida 2023, Orlando, FL, March 2023.
  4. P. Morales-Cruz, F. Sommerhage, J. Manrique-Castro, D. DeRoo, and S. Rajaraman, “A Breath Condensate Collection Chip for use Towards Point-of-Care (POC) Patient Diagnostics of Viral Diseases”, NanoFlorida 2023, Orlando, FL, March 2023.
  5. O. Cepeda-Torres, C. Didier, C. Edmonds and S. Rajaraman, “Scaling up 3D Microelectrode Arrays with SU8 as an Insulator Material to a 6 Well Interface System”, NanoFlorida 2023, Orlando, FL, March 2023.
  6. F. Sommerhage, D. DeRoo, and S. Rajaraman, “Electrophysiology Enabled Biosensors”, the 20th Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head 2022), Hilton Head, SC, June 2022.
  7. A. Childs, J. Pereira, A. Baksh, C. Didier, G. Giannelli, E. Davidson, S. Santra, and S. Rajaraman, “Rapid, Cost-Effective Plotter Cute Stencil Masks for the Deposition of Organic and Inorganic Materials and the Creation of a New Antibiotic Diffusion Test for Minimum Lethal Concentration Detection”, NanoFlorida 2022, Gainesville, FL, April 2022.
  8. O. Cepeda-Torres, A. Baksh, J. Orrico, C. Didier, C. J. Manrique-Castro, and S. Rajaraman, “3D Microelectrode Arrays (3D MEAs) with PentaModal Sensing Capabilities for the Investigation of Electrogenic Cells”, Gulf Coast Undergraduate Research Symposium @Rice University, Oct 16-17, 2021.
  9. P.M. Morales Carvajal, A. Kundu, C. Didier, C. Hart, F. Sommerhage and S. Rajaraman, “Microfabrication and Assembly of a 3D Microelectrode Array (MEA) for Simultaneous Optical and Electrical Probing of an Electrogenic “Organ-on-a-Chip” Model”, 28th Puerto Rico Neuroscience Conference, Virtual, Dec 2020.
  10. P.M. Morales Carvajal, A. Kundu, C. Didier, C. Hart, F. Sommerhage and S. Rajaraman, “Microfabrication and Assembly of a 3D Microelectrode Array (MEA) for Simultaneous Optical and Electrical Probing of an Electrogenic “Organ-on-a-Chip” Model”, Gulf Coast Undergraduate Research Symposium @Rice University, Virtual, Oct 2020.
  11. P.M. Morales Carvajal, A. Kundu, C. Didier, C. Hart, F. Sommerhage and S. Rajaraman, “Microfabrication and Assembly of a 3D Microelectrode Array (MEA) for Simultaneous Optical and Electrical Probing of an Electrogenic “Organ-on-a-Chip” Model”, NanoFlorida 2019, Tampa, FL, Nov 2019.
  12. C. Didier, A. Kundu and S. Rajaraman, “Development of “Dynamic” 3D Microelectrodes using Optimized, 3D Printed Serpentines”, NanoFlorida 2019, Tampa, FL, Nov 2019.
  13. L. Santra, A. Kundu and S. Rajaraman, “A Minimally-Invasive 3D Printed Microneedle Array Applicator System (µNAAS) for Delivery of Therapeutics to Citrus Leaf Tissue”, NanoFlorida 2019, Tampa, FL, Nov 2019.
  14. A. Kundu, C. Hart, C. Didier, L. Santra, T. Ausaf and S. Rajaraman, “Microneedles as Wearable Devices for Diagnostic and Therapeutic Monitoring of Citrus Trees”, NanoFlorida 2018, Melbourne, FL, Oct 2018.
  15. L. Santra, T. Ausaf, A. Kundu and S. Rajaraman, “Microneedle-Assisted Delivery of Model Therapeutics to Plant Tissue”, NanoFlorida 2018, Melbourne, FL, Oct 2018.
  16. C. Didier, A. Kundu and S. Rajaraman, “Micromachined 3D Microelectrode Arrays (MEAs), Functionalized Through Nanomaterial Electroplating for Tissue Culture in Space”, NanoFlorida 2018, Melbourne, FL, Oct 2018.
  17. C. Nattoo, A. Kundu and S. Rajaraman, “Optimization of Makerspace Microfabrication Techniques and Materials for 3D Printed Microelectrode Arrays”, NanoFlorida 2018, Melbourne, FL, Oct 2018.
  18. S. Fremgen, S. Springer, A. Kundu and S. Rajaraman, “Comparison of the Technical Capabilities of Traditional Glass Surface Micromachining/Chip-on-Board and 3D Printing-based Microfabrication Technologies Utilizing a Microelectrode Array (MEA) as a Platform Device”, the 11th International Meeting on Substrate-Integrated Microelectrode Arrays, Reutlingen, Germany, July 2018.
  19. S. Fremgen, S. Springer, A. Kundu and S. Rajaraman, “Comparison of the Technical Capabilities of Traditional Glass Surface Micromachining/Chip-on-Board and 3D Printing-based Microfabrication Technologies Utilizing a Microelectrode Array (MEA) as a Platform Device”, the 11th International Meeting on Substrate-Integrated Microelectrode Arrays, Reutlingen, Germany, July 2018.
  20. S. Springer, S. Fremgen, and S. Rajaraman, “Building a Modified Replicating Rapid-Prototyping Printer (RepRap) for Extrusion BioPlotting of Cardiomyocytes atop Planar Microelectrode Arrays (MEAs)” the 11th International Meeting on Substrate-Integrated Microelectrode Arrays, Reutlingen, Germany, July 2018.
  21. L. Santra, T. Ausaf and S. Rajaraman, “Microneedle Assisted Delivery of Model Therapeutic in Plant Tissue”, Florida American Vacuum Society Meeting, Orlando, FL, May 2018.

Conference Posters, Talks and Abstracts (Prior to UCF)

  1. R.J. Aguilar, G.S. Guvanasen, C. Karnati, T.R. Nichols, S.P. DeWeerth and S. Rajaraman, “Development of Microfabrication and Packaging Technologies toward a Conformable Microelectrode Array (cMEA)”, Georgia Tech Institute for Electronics and Nanotechnology First Annual User Meeting, Atlanta, GA, 2013.
  2. S. Rajaraman, C. Karnati, R.D. Grier, A.R. Schoenborn, C.M. Arrowood and J.D. Ross, “High-Throughput Microelectrode Arrays (HTMEAs) for Network Electrophysiology”, Society for Neuroscience Conference, New Orleans, LA, 2012.
  3. G.S. Guvanasen, S. Rajaraman, T.R. Nichols and S.P. DeWeerth, “The Development of a Stretchable Conductive Polydimethyl Siloxane (PDMS) Penetrating Electrode Arrays for Intramuscular Recording”, Neural Interfaces Conference, Salt Lake City, UT, 2012.
  4. S. Rajaraman, M.A. McClain, C. Karnati, R.D. Grier, I.C. Henrich and J.D. Ross, “Multiwell Microelectrode Arrays (MWMEAs) for Network Electrophysiology”, Society of Neuroscience Conference, Washington, DC, 2011.
  5. J.D. Ross, S. Rajaraman, E. A. Brown, M.A. McClain, E. McConnell and T.J. O’Brien, “High Throughput Neurotoxic Screening with a Novel Microelectrode Array System” Society for Neuroscience Conference, Washington, DC, 2011.
  6. M.A. McClain, E.A. Brown, S. Rajaraman, T.J. O’Brien and J.D. Ross, “A Perfusion-Integrated MEA for Fluidic Control in Acute and Long-term Studies of Network Electrophysiology”, Society for Neuroscience Conference, Washington, DC, 2011.
  7. P-C. Wang, B.A. Wester, S. Rajaraman, S-J. Paik, S-H. Kim and M.G. Allen, “Photolithographically-Patterned Hollow Polymer Microneedle Array”, First International Conference on Microneedles, Atlanta, GA, 2010.
  8. B.A. Wester, J.D. Ross, S. Rajaraman, M.G. Allen and M.C. LaPlaca, “A Single Unit Neural Injury Model using Mechanically Actuated Microtweezers”, Society of Neuroscience Conference, Chicago, IL, 2009.
  9. M. G. Allen, S-H. Kim, S. Rajaraman, P-C. Wang, H. Toreyin and B. A. Wester, “Microneedle Fabrication Methods”, Microneedle Vaccination Annual Meeting, Atlanta, GA, 2008.
  10. S. Rajaraman, Y. Zhao, X. Wu, S-H. Kim and M.G. Allen, “Metal Transfer Micromolding (MTM) Process for High Aspect Ratio 3-D Structures with Functional Metal Surfaces”, ASME Conf. on Flexible Automation, Atlanta, GA, 2008.
  11. J. McNeir, M. Gyamerah, S. Rajaraman, P.J. Hesketh, D.S. Gottfried and J. Gole, “Dielectrophoresis Based Micro-Devices for Separation and Analysis of Micro-Particles”, AIChE Annual Meeting, San Francisco, CA, 2006.
  12. S. Rajaraman, S. Kumar, H-S. Noh, P.J. Hesketh and D.S. Gottfried, “Dielectrophoretic Micro-Devices for Manipulation of Nanowires and Macro-Molecules”, Electrochemical Society Symposium on Electrochemical Systems, Sensors and MEMS, Atlanta, GA, 2004.
  13. S. Kumar, H. Shin, S. Rajaraman, P.J. Hesketh and Z.L. Wang, “SnO2 Nanosensor Fabrication”, Electrochemical Society Symposium on Electrochemical Systems, Sensors and MEMS, Atlanta, GA, 2004.
  14. S. Rajaraman, B. Van Dyke, H.T. Henderson “Applications of Coherent Porous Silicon Technology in MEMS”, International Conference on Nanocomputing – Technology Trends, Tamil Nadu, India, Dec 2001.

Invited Book Chapters

  1. S. Rajaraman, “Micromachining Techniques for the Realization of 3-D Microelectrode Arrays”, Book Chapter in Nanotechnologies and Neuroscience: Nano-Electronic, Photonic and Mechanical Interfacing (Editors – M. De Vittorio, J. Assad and L. Martiradonna), Springer, New York, NY 2014.

Patents

Patents/Applications Filed (at UCF)

  1. S. Rajaraman, A. Kundu and T. Ausaf, “System and Method for Forming a Biological Microdevice”, US Patent 11,351,537, Filed: 2018; Awarded: 2022.
  2. S. Rajaraman, M.J. Moore, C. Didier, and J. Orrico, “Three-Dimensional Microelectrode Array having Electrical, Optical, and Microfluidic Interrogation of Electrogenic Cell Constructs” US Patent Application 2021/109-02, Filed: 2022.
  3. P. Rajasekaran, and S. Rajaraman, “Method and Apparatus for Determining a Presence of a Microorganism in a Sample”, US Patent 11,327,068 Filed: 2018; Awarded: 2022.
  4. S. Rajaraman and J. Thomas, “Interdigitated Electrodes for In Vitro Analysis of Cells”, US Patent 16/166,836, Filed: 2018; Awarded: 2021.
  5. P. Rajasekaran, and S. Rajaraman, “Method and Apparatus for Determining a Presence of a Microorganism in a Sample”, US Patent 16/893,210, Filed: 2018; Awarded: 2021.
  6. J. L. Curley, M. J. Moore, C. Rountree, H. Nguyen, S. Rajaraman and A. Kundu, “Microelectrode Array and Uses Thereof”, US Patent Application 17/193,589, Filed: 2021.
  7. S. Rajaraman, A. Kundu, A. Rozman and J. Castro, “3D Printed, High Throughput 3D Microelectrode Array”, US Patent Application 17/348,845, Filed: 2021.
  8. S. Rajaraman, A. Kundu, A. Rozman and J. Castro, “Method for Forming High Throughput 3D Microelectrode Array”, US Patent Application 17/348,866, Filed: 2021.
  9. S. Rajaraman, A. Kundu, C. Didier, J. L. Curley, M. J. Moore, H. Nguyen and C. Rountree “3D Microelectrode Array (MEA) for Optical and Electrical Probing of Electrogenic Cells”, PCT US20/60779, Filed: 2020.
  10. S. Rajaraman, “A Makerspace Based Stainless Steel 3D Microelectrode Array (MEA) on Glass Substrate for Optical and Electrical Probing of Electrogenic Cells”, US Provisional Patent Application 63/083,976, Filed: 2020.
  11. S. Rajaraman, C. Didier and A. Kundu, “Fabrication of 3D Microelectrodes and use Thereof in Multi-Functional Biosystems”, US Patent Application 16/908,666, Filed: 2020.
  12. S. Rajaraman, C. Didier and A. Kundu, “Microserpentines and Electrodes for Stretchable and Conformable Biosensor Applications”, US Patent Application 16/857,623, Filed: 2020.
  13. S. Rajaraman, “A Makerspace Based Stainless Steel 3D Microelectrode Array (MEA) on Glass Substrate for Optical and Electrical Probing of Electrogenic Cells”, US Provisional Patent Application 62/935,987, Filed: 2019.
  14. S. Rajaraman, L. Zhai, N. Azim and A. Kundu, “Fabrication of 3D Microelectrodes and use Thereof in Multi-Functional Biosystems”, US Patent Application 16/404,729, Filed: 2019.
  15. S. Santra, S. Rajaraman, W-H. Lee, M. Campos and Y. Xu, “Phloem-based Delivery of Therapeutics”, US Patent Application 16/104,752, Filed: 2018.

Patents/Applications Filed (Prior to UCF and work done prior to UCF)

  1. R.J. Butera, Y.A. Patel, J.D. Ross, S. Rajaraman and I.P. Clements, “Neural Interfacing Device”, US Patent Application 20210236033, Filed 2021.
  2. I.P. Clements, A.J. Preyer, S. Rajaraman, D.C. Millard and J.D. Ross, “Multiwell Microelectrode Array with Optical Stimulation”, US Patent 10989703, Filed: 2019; Awarded: 2021.
  3. I.P. Clements, A.J. Preyer, S. Rajaraman, D.C. Millard and J.D. Ross, “Multiwell Microelectrode Array with Optical Stimulation”, US Patent Application 20200003753, Filed: 2019.
  4. P.E. Tyler, A.J. Preyer and S. Rajaraman, “Cell-Based Biosensor Array and Associated Methods for Manufacturing the same”, US Patent 10067117, Filed: 2015; Awarded: 2018.
  5. I.P. Clements, A.J. Preyer, S. Rajaraman, D.C. Millard and J.D. Ross, “Multiwell Microelectrode Array with Optical Stimulation”, US Patent 14738618, Filed: 2015; Awarded: 2016.
  6. I.P. Clements, A.J. Preyer, S. Rajaraman, D.C. Millard and J.D. Ross, “Multiwell Microelectrode Array with Optical Stimulation”, US Patent 9360469, Filed: 2015; Awarded: 2016.
  7. R.J. Butera, Y.A. Patel, J.D. Ross, S. Rajaraman and I.P. Clements, “Neural Interfacing Device”, US Patent 10959631, Filed 2015; Awarded: 2021.
  8. R.D. Grier, A.M. Nicolini, C.M. Arrowood and S. Rajaraman, “Devices, Systems and Methods for Targeted Plating of Materials in High-Throughput Culture Plates” US Patent Application 20180163165, Filed 2018.
  9. R.D. Grier, A.M. Nicolini, C.M. Arrowood and S. Rajaraman, “Devices, Systems and Methods for Targeted Plating of Materials in High-Throughput Culture Plates” US Patent 9885012, Filed 2014; Awarded: 2018.
  10. S. Rajaraman, J.A. Bragg, J.D. Ross and A.J. Preyer, “A Non-Invasive, Segmentable Three-Dimensional Microelectrode Array Patch for Neurophysiological Diagnostics and Therapeutic Stimulation”, US Patent 9700221 Filed 2014; Awarded: 2017.
  11. S. Rajaraman, J.D. Ross and A.J. Preyer, “Devices, Systems and Methods for High-Throughput Electrophysiology”, US Patent 9279801 Filed: 2013; Awarded: 2016.
  12. S. Rajaraman, J.D. Ross and A.J. Preyer, “Devices, Systems and Methods for High-Throughput Electrophysiology”, US Patent 9329168 Filed: 2013; Awarded: 2016.
  13. S. Rajaraman, J.D. Ross and A.J. Preyer, “Culture well Plate” US and EU Design Patent Application 2281386, Filed 2013.
  14. G.S. Guvanasen, S. Rajaraman, R. Aguilar, L. Guo, T.R. Nichols and S.P. DeWeerth, “3-D Microelectrode Device for Live Tissue Applications”, US Patent 9248273, Filed 2013; Awarded 2015.
  15. M.G. Allen, Y-K. Yoon, J-H. Park, X. Wu, Y. Zhao, S-O. Choi and S. Rajaraman, “Method for Making Electrically Conductive Three-Dimensional Structures”, US Patent 9330820, Filed 2013; Awarded: 2016.
  16. J.D. Ross, E.A. Brown, S. Rajaraman, M.G. Allen and B.C. Wheeler “Apparatus and Methods for High Throughput Network Electrophysiology and Cellular Analysis”, US Patent 9290756, Filed 2010; Awarded: 2016.
  17. M. Karpman and S. Rajaraman, “Shadow Mask and Method of making the same”, US Patent Number 6893976. Analog Devices Inc., Filed: 2002, Awarded: 2005

Dissertations and Thesis

  1. J. Manrique Castro, “Microfabrication, Modeling and Characterization of BioMEMS Platforms for Interfacing with Multisized Biological Entities for In vitro Studies”, Ph.D. Dissertation, University of Central Florida, Orlando, FL, 2023. 
  2. C. Didier, “3D Microelectrode Arrays for the Study and Interrogation of Electrogenic Cells in Fabricated Microenvironments”, Ph.D. Dissertation, University of Central Florida, Orlando, FL, 2022.
  3. J. Orrico, “Micro/NanoFabrication Process Development and Device Characterization Towards Tri-Modal (Optical, Electrical and Microfluidic) 3D Microelectrode Arrays (MEAs)”, MS Thesis, University of Central Florida, Orlando, FL, 2021.
  4. N. Azim, “Polymer-based and Functionalized 3D Microelectrode Array (MEA) Biosensors”, Ph.D. Dissertation, University of Central Florida, Orlando, FL, 2021.
  5. C. Hart, “Development of Facile Microfabrication Technologies for the Fabrication and Characterization of Multimodal Impedimetric, Plasmonic, and Electrophysiological Biosensors”, Ph.D. Dissertation, University of Central Florida, Orlando, FL, 2020.
  6. C. Didier, “Development of 3D Printed and 3D Metal-Based Micro/Nanofabricated and Nano-Functionalized, Microelectrode Array (MEA) Biosensors for Flexible, Conformable and In vitro Applications”, MS Thesis, University of Central Florida, Orlando, FL, 2019.
  7. S. Rajaraman, “Micromachined Three-Dimensional Electrode Arrays for in vitro and in vivo Electrogenic Cellular Networks”, Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 2009.
  8. S. Rajaraman, “Silicon MEMS-Based Development and Characterization of Batch Fabricated Microneedles for Biomedical Applications”, MS Thesis, University of Cincinnati, Cincinnati, OH, 2001.